Function MCQ Questions & Answers in Calculus | Maths
Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
1.
The period of the function $$f\left( x \right) = \left| {\sin \frac{x}{2}} \right| + \left| {\cos \,x} \right|$$ is :
A
$$2\pi $$
B
$$\pi $$
C
$$4\pi $$
D
none of these
Answer :
$$2\pi $$
$$\left| {\sin \frac{x}{2}} \right|$$ is a periodic function of period $$2\pi $$ and $$\left| {\cos \,x} \right|$$ is a periodic function of period $$\pi .$$
2.
The domain of $$f\left( x \right) = \frac{1}{{\sqrt {\left| {\cos \,x} \right| + \cos \,x} }}$$ is :
A
$$\left[ { - 2n\pi ,\,2n\pi } \right]$$
B
$$\left( {2n\pi ,\,\overline {2n + 1} \,\pi } \right)$$
$$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$
Consider $$f\left( x \right) = \left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right|$$
$$f\left( x \right) = \left\{ {_{_{3x - 6,}^{x,}}^{_{4 - x,}^{6 - 3x,}}} \right.\,_{_{x \geqslant 3}^{2 \leqslant x < 3}}^{_{1 \leqslant x < 2}^{x < 1}}$$ NOTE THIS STEP:
Graph of $$f\left( x \right)$$ shows $$f\left( x \right)\, \geqslant 6$$ for $$x \leqslant 0$$ or $$x \geqslant 4$$
5.
For real $$x,$$ let $$f\left( x \right) = {x^3} + 5x + 1,$$ then
A
$$f$$ is onto $$R$$ but not one-one
B
$$f$$ is one-one and onto $$R$$
C
$$f$$ is neither one-one nor onto $$R$$
D
$$f$$ is one-one but not onto $$R$$
Answer :
$$f$$ is one-one and onto $$R$$
Given that $$f\left( x \right) = {x^3} + 5x + 1$$
$$\therefore f'\left( x \right) = 3{x^2} + 5 > 0,\forall x \in R$$
$$ \Rightarrow f\left( x \right)$$ is strictly increasing on $$R$$
$$ \Rightarrow f\left( x \right)$$ is one one
$$\therefore $$ Being a polynomial $$f\left( x \right)$$ is cont. and inc.
on $$R$$ with $$\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = - \infty $$
and $$\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \infty $$
$$\therefore $$ Range of $$f = \left( { - \infty ,\infty } \right) = R$$
Hence $$f$$ is onto also. So, $$f$$ is one one and onto $$R$$.
6.
The domain of the function $$\sqrt {{x^2} - 5x + 6} + \sqrt {2x + 8 - {x^2}} $$ is :
A
$$\left[ {2,\,3} \right]$$
B
$$\left[ { - 2,\,4} \right]$$
C
$$\left[ { - 2,\,2} \right] \cup \left[ {3,\,4} \right]$$
D
$$\left[ { - 2,\,1} \right] \cup \left[ {2,\,4} \right]$$
$$f\left( x \right) = \sqrt {\left( {x - 2} \right)\left( {x - 3} \right)} + \sqrt { - \left( {x - 4} \right)\left( {x + 2} \right)} $$
The first part is real outside $$\left( {2,\,3} \right)$$ and the second is real in $$\left[ { - 2,\,4} \right]$$ so that the domain is $$\left[ { - 2,\,2} \right] \cup \left[ {3,\,4} \right].$$
7.
The domain of the function $$f\left( x \right) = \frac{1}{{\sqrt {\left| x \right| - x} }}$$ is
$$\eqalign{
& f\left( x \right) = \frac{1}{{\sqrt {\left| x \right| - x} }},{\text{define}}\,{\text{if}}\,\left| x \right| - x > 0 \cr
& \Rightarrow \left| x \right| > x, \Rightarrow x < 0 \cr} $$
Hence domain of $$f\left( x \right)$$ is $$\left( { - \infty ,0} \right)$$
8.
If $$f\left( x \right) = {x^n},\,n\, \in \,N$$ and $$\left( {g\,o\,f} \right)\left( x \right) = ng\left( x \right)$$ then $$g\left( x \right)$$ can be :
A
$$n\,\left| x \right|$$
B
$$3 \cdot \root 3 \of x $$
C
$${e^x}$$
D
$$\log \,\left| x \right|$$
Answer :
$$\log \,\left| x \right|$$
$$g\left\{ {f\left( x \right)} \right\} = g\left( {{x^n}} \right) = ng\left( x \right).$$ Also $$\log \,{x^n} = n\,\log \,\left| x \right|.$$ So, $$g\left( x \right) = \log \,\left| x \right|$$ is possible.
9.
If $$f\left( x \right) = 4x - {x^2},\,x\, \in \,R,$$ then $$f\left( {a + 1} \right) - f\left( {a - 1} \right)$$ is equal to :
10.
Let $$f\left( x \right) = {\left( {x + 1} \right)^2} - 1,x \geqslant - 1.$$ Then the set $$\left\{ {x:f\left( x \right) = {f^{ - 1}}\left( x \right)} \right\}$$ is