Function MCQ Questions & Answers in Calculus | Maths
Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
101.
Let $$f\left( x \right) = \left| {x - 2} \right| + \left| {x - 3} \right| + \left| {x - 4} \right|$$ and $$g\left( x \right) = f\left( {x + 1} \right).$$ Then :
A
$$g\left( x \right)$$ is an even function
B
$$g\left( x \right)$$ is an odd function
C
$$g\left( x \right)$$ is neither even nor odd
D
$$g\left( x \right)$$ is periodic
Answer :
$$g\left( x \right)$$ is neither even nor odd
$$\eqalign{
& g\left( x \right) = f\left( {x + 1} \right) = \left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \cr
& {\text{If }}x < 1,\,\,\,g\left( x \right) = - x + 1 - x + 2 - x + 3 = - 3x + 6 \cr
& {\text{If 1}} \leqslant x < 2,\,\,\,g\left( x \right) = x - 1 - x + 2 - x + 3 = - x + 4 \cr
& {\text{If 2}} \leqslant x < 3,\,\,\,g\left( x \right) = x - 1 + x - 2 - x + 3 = x \cr
& {\text{If }}x \geqslant 3,\,\,\,g\left( x \right) = x - 1 + x - 2 + x - 3 = 3x - 6 \cr} $$
102.
The largest set of real values of $$x$$ for which $$f\left( x \right) = \sqrt {\left( {x + 2} \right)\left( {5 - x} \right)} - \frac{1}{{\sqrt {{x^2} - 4} }}$$ is a real function is :
A
$$\left[ {1,\,2} \right) \cup \left( {2,\,5} \right]$$
B
$$\left( {2,\,5} \right]$$
C
$$\left[ {3,\,4} \right]$$
D
none of these
Answer :
$$\left( {2,\,5} \right]$$
The domain of $$\sqrt {\left( {x + 2} \right)\left( {5 - x} \right)} $$ is the set of values of $$x$$ for which $$\left( {x + 2} \right)\left( {5 - x} \right) \geqslant 0,\,\,{\text{i}}{\text{.e}}{\text{., }}x\, \in \left[ { - 2,\,5} \right].$$
The domain of $$\frac{1}{{\sqrt {{x^2} - 4} }}$$ is the set of values of $$x$$ for which $${x^2} - 4 > 0,\,\,{\text{i}}{\text{.e}}{\text{.,}}\,\,x\, \in \left( { - \infty ,\, - 2} \right) \cup \left( {2,\, + \infty } \right)$$
The common values are in $$\left( {2,\,5} \right]$$
103.
Let $$f:\left( { - 1,1} \right) \to B,$$ be a function by $$f\left( x \right) = {\tan ^{ - 1}}\frac{{2x}}{{1 - {x^2}}},$$ then $$f$$ is both one-one and onto when $$B$$ is the interval
A
$$\left( {0,\frac{\pi }{2}} \right)$$
B
$$\left[ {0,\left. {\frac{\pi }{2}} \right)} \right.$$
C
$$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$$
D
$$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$
$$\eqalign{
& {\text{Given }}f\left( x \right) = {\tan ^{ - 1}}\left( {\frac{{2x}}{{1 - {x^2}}}} \right) = 2{\tan ^{ - 1}}x{\text{ for }}x \in \left( { - 1,1} \right) \cr
& {\text{If }}x \in \left( { - 1,1} \right) \Rightarrow {\tan ^{ - 1}}x \in \left( {\frac{{ - \pi }}{4},\frac{\pi }{4}} \right) \cr
& \Rightarrow 2{\tan ^{ - 1}}x \in \left( {\frac{{ - \pi }}{2},\frac{\pi }{2}} \right) \cr} $$
Clearly, range of $$f\left( x \right) = \left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$
For $$f$$ to be onto, co-domain = range
Co-domain of function $$ = B = \left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$
104.
Let $$f$$ be a function on $${\bf{R}}$$ given by $$f\left( x \right) = {x^2}$$ and let
$$E = \left\{ {x\, \in \,{\bf{R}}: - 1 \leqslant x \leqslant 0} \right\}$$ and
$$F = \left\{ {x\, \in \,{\bf{R}}:0 \leqslant x \leqslant 1} \right\}$$
then which of the following is false ?
A
$$f\left( E \right) = f\left( F \right)$$
B
$$E \cap F \subset f\left( E \right) \cap f\left( F \right)$$
C
$$E \cup F \subset f\left( E \right) \cup f\left( F \right)$$
D
$$f\left( {E \cap F} \right) = \left\{ 0 \right\}$$
Answer :
$$E \cup F \subset f\left( E \right) \cup f\left( F \right)$$
$$\eqalign{
& {\text{We have }} - 1 \leqslant x \leqslant 0 \Rightarrow 0 \leqslant {x^2} \leqslant 1......({\text{i}}) \cr
& {\text{and }}0 \leqslant x \leqslant 1 \Rightarrow 0 \leqslant {x^2} \leqslant 1......({\text{ii}}) \cr
& \therefore \,E = \left\{ {x\, \in \,{\bf{R}}: - 1 \leqslant x \leqslant 0} \right\} \cr
& \Rightarrow f\left( E \right) = \left\{ {x\, \in \,{\bf{R}}:0 \leqslant x \leqslant 1} \right\}{\text{ from (i)}} \cr
& {\text{Also, }}F = \left\{ {x\, \in \,{\bf{R}}:0 \leqslant x \leqslant 1} \right\} \cr
& \Rightarrow f\left( F \right) = \left\{ {x\, \in \,{\bf{R}}:0 \leqslant x \leqslant 1} \right\}{\text{ from (ii)}} \cr
& {\text{Hence, }}f\left( E \right) = f\left( F \right) \cr
& {\text{Again }}E \cap F = \left\{ 0 \right\} \subset f\left( E \right) \cap f\left( F \right) \cr
& \left[ {{\text{Since }}f\left( E \right) = f\left( F \right)\,\therefore \,f\left( E \right) \cap f\left( F \right) = f\left( E \right) = f\left( F \right)} \right]{\text{ }} \cr
& {\text{Also }}E \cap F = \left\{ 0 \right\} \Rightarrow f\left( {E \cap F} \right) = \left\{ 0 \right\} \cr
& {\text{Next }}E \cup F = \left\{ {x\, \in \,{\bf{R}}: - 1 \leqslant x \leqslant 1} \right\} \cr
& {\text{and }}f\left( E \right) \cup f\left( F \right) = \left\{ {x\, \in \,{\bf{R}}:0 \leqslant x \leqslant 1} \right\} \cr
& \therefore \,E \cup F \subset f\left( E \right) \cup f\left( F \right) \cr} $$
105.
Let $${\text{ }}f\left( x \right) = {x^2}$$ and $$g\left( x \right) = \sin x$$ for all $$x \in R.$$ Then the set of all $$x$$ satisfying $$\left( {fogogof} \right)\left( x \right) = \left( {gogof} \right)\left( x \right),$$ where $$\left( {fog} \right)\left( x \right) = f\left( {g\left( x \right)} \right),$$ is
$$\eqalign{
& {\text{Given that }}f\left( x \right) = {x^2}\,{\text{and }}g\left( x \right) = \sin x,\forall x \in R \cr
& {\text{Then }}\left( {gof} \right)\left( x \right) = \sin {x^2} \Rightarrow \left( {gogof} \right)\left( x \right) = \sin \left( {\sin {x^2}} \right) \cr
& \Rightarrow \left( {fogogof} \right)\left( x \right) = {\sin ^2}\left( {\sin {x^2}} \right) \cr
& {\text{As given that }}\left( {fogogof} \right)\left( x \right) = \left( {gogof} \right)\left( x \right) \Rightarrow {\sin ^2}\left( {\sin {x^2}} \right) = \sin \left( {\sin {x^2}} \right) \cr
& \Rightarrow \sin \left( {\sin {x^2}} \right) = 0,1 \cr
& \Rightarrow \sin {x^2} = n\pi \,{\text{or }}\left( {\left( {4n + 1} \right)\frac{\pi }{2}} \right.\,{\text{where }}n \in Z \cr
& \Rightarrow \sin {x^2} = 0\,\,\because \sin {x^2} \in \left[ { - 1,1} \right] \Rightarrow {x^2} = n\pi \cr
& \Rightarrow x = \pm \sqrt {n\pi } {\text{ where }}n \in W \cr} $$
106.
If $$\left[ \cdot \right]$$ denotes the greatest integer function then the domain of the real valued function $${\log _{\left[ {x + \frac{1}{2}} \right]}}\left| {{x^2} - x - 2} \right|$$ is :
108.
Let $$f$$ be a function satisfying $$f\left( {x + y} \right) = f\left( x \right) \cdot f\left( y \right)$$ for all $$x,\,y\, \in \,R.$$ If $$f\left( 1 \right) = 3$$ then $$\sum\limits_{r = 1}^n {f\left( r \right)} $$ is equal to :
109.
Suppose $$f\left( x \right) = {\left( {x + 1} \right)^2}$$ for $$x \geqslant - 1.$$ If $$g\left( x \right)$$ is the function whose graph is the reflection of the graph of $$f\left( x \right)$$ with respect to the line $$y = x,$$ then $$g\left( x \right)$$ equals
A
$$ - \sqrt {x - 1} ,x \geqslant 0$$
B
$$\frac{1}{{{{\left( {x + 1} \right)}^2}}},x > - 1$$
C
$$\sqrt {x + 1} ,x \geqslant - 1$$
D
$$\sqrt {x - 1} ,x \geqslant 0$$
Answer :
$$\sqrt {x - 1} ,x \geqslant 0$$
Given that f $$f\left( x \right) = {\left( {x + 1} \right)^2},x \geqslant - 1$$
Now if $$g\left( x \right)$$ is the reflection of $$f\left( x \right)$$ in the line $$y = x$$ then it can be obtained by interchanging $$x$$ and $$y$$ in $$f\left( x \right)$$
i.e., $$y = {\left( {x + 1} \right)^2}$$ changes to $$x = {\left( {y + 1} \right)^2}$$
$$\eqalign{
& \Rightarrow y + 1 = \sqrt x \cr
& \left[ {y + 1 \ne - \sqrt x ,\,{\text{since}}\,y \geqslant - 1\,{\text{as}}\,{\text{in}}\,{\text{figure}}.} \right. \cr
& \Rightarrow y = \sqrt x - 1\,{\text{defined}}\,\forall x \geqslant 0 \cr} $$
$$\therefore g\left( x \right) = \sqrt x - 1\,\forall x \geqslant 0$$
110.
Domain of definition of the function $$f\left( x \right) = \frac{3}{{4 - {x^2}}} + {\log _{10}}\left( {{x^3} - x} \right),$$ is :