Function MCQ Questions & Answers in Calculus | Maths
Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
121.
If the function $$f:R \to R$$ be such that $$f\left( x \right) = x - \left[ x \right],$$ where $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y,$$ then $${f^{ - 1}}\left( x \right)$$ is :
A
$$\frac{1}{{x - \left[ x \right]}}$$
B
$$\left[ x \right] - x$$
C
not defined
D
none of these
Answer :
not defined
$$x - \left[ x \right] = 0$$ for all integral values of $$x.$$ Therefore, the function is many-one and, therefore, not defined.
122.
The function $$f\left( x \right) = \sin \frac{{\pi x}}{{n!}} - \cos \frac{{\pi x}}{{\left( {n + 1} \right)!}}$$ is :
A
not periodic
B
periodic, with period $$2\left( {n\,!} \right)$$
C
periodic, with period $${\left( {n + 1} \right)}$$
D
none of these
Answer :
none of these
$$\sin \frac{{\pi x}}{{n!}}$$ has the period $$\frac{{2\pi }}{{\frac{\pi }{{n\,!}}}},$$ i.e., $$2\left( {n\,!} \right)$$ and $$\cos \frac{{\pi x}}{{\left( {n + 1} \right)!}}$$ has the period $$\frac{{2\pi }}{{\frac{\pi }{{\left( {n + 1} \right)!}}}},$$ i.e., $$2\left\{ {\left( {n + 1} \right)!} \right\}.$$ Their LCM $$ = 2\left\{ {\left( {n + 1} \right)!} \right\}.$$
123.
The period of the function $$f\left( x \right) = 3\sin \frac{{\pi x}}{3} + 4\cos \frac{{\pi x}}{4}$$ is :
A
6
B
24
C
8
D
$$2\pi $$
Answer :
24
The period of $$\sin \frac{{\pi x}}{3}$$ is $$\frac{{2\pi }}{{\frac{\pi }{3}}},$$ i.e., 6. The period of $$\cos \frac{{\pi x}}{4}$$ is $$\frac{{2\pi }}{{\frac{\pi }{4}}},$$ i.e., 8.
LCM of 6 and 8 is 24. So, the period of $$f\left( x \right) = 24.$$
124.
A real valued function $$f\left( x \right)$$ satisfies the functional equation $$f\left( {x - y} \right) = f\left( x \right)f\left( y \right) - f\left( {a - x} \right)f\left( {a + y} \right)$$
where $$a$$ is a given constant and $$f\left( 0 \right) = 1,f\left( {2a - x} \right)$$ is equal to
125.
Let $$f\left( x \right) = {\left( {x + 1} \right)^2} - 1,x \geqslant - 1$$
Statement -1 : The set $$\left\{ x \right.:f\left( x \right) = {f^{ - 1}}\left( x \right) = \left\{ {0, - 1} \right\}$$
Statement-2 : $$f$$ is a bijection.
A
Statement-1 is true, Statement-2 is true.
Statement-2 is not a correct explanation for Statement-1.
B
Statement-1 is true, Statement-2 is false.
C
Statement-1 is false, Statement-2 is true.
D
Statement-1 is true, Statement-2 is true.
Statement-2 is a correct explanation for Statement-1.
Answer :
Statement-1 is true, Statement-2 is false.
Given that $$f\left( x \right) = {\left( {x + 1} \right)^2} - 1,x \geqslant - 1$$
Clearly $${D_f} = \left[ { - ,\infty } \right)$$ but co-domain is not given. Therefore $$f\left( x \right)$$ need not be necessarily onto.
But if $$f\left( x \right)$$ is onto then as $$f\left( x \right)$$ is one one also, $$\left( {x + 1} \right)$$ being something $$+ve,$$ $${f^{ - 1}}\left( x \right)$$ will exist where $${\left( {x + 1} \right)^2} - 1 = y$$
$$\eqalign{
& \Rightarrow x + 1 = \sqrt {y + 1} \,\left( {{\text{ + ve}}\,{\text{square root as}}\,x + 1 \geqslant 0} \right) \cr
& \Rightarrow x = - 1 + \sqrt {y + 1} \Rightarrow {f^{ - 1}}\left( x \right) = \sqrt {x + 1} - 1 \cr
& {\text{Then}}\,f\left( x \right) = {f^{ - 1}}\left( x \right) \Rightarrow {\left( {x + 1} \right)^2} - 1 = \sqrt {x + 1} - 1 \cr
& \Rightarrow {\left( {x + 1} \right)^2} = \sqrt {x + 1} \Rightarrow {\left( {x + 1} \right)^4} = \left( {x + 1} \right) \cr
& \Rightarrow \left( {x + 1} \right)\left[ {{{\left( {x + 1} \right)}^3} - 1} \right] = 0 \Rightarrow x = - 1,0 \cr} $$
$$\therefore $$ The statement-1 is correct but statement-2 is false.
126.
Let $$f:R \to R$$ be any function. Define $$g:R \to R$$ by $$g\left( x \right) = \left| {f\left( x \right)} \right|$$ for all $${x.}$$ Then $${g}$$ is
A
onto if $$f$$ is onto
B
one-one if $$f$$ is one-one
C
continuous if $$f$$ is continuous
D
differentiable if $$f$$ is differentiable.
Answer :
continuous if $$f$$ is continuous
$$\eqalign{
& {\text{Let}}\,h\left( x \right) = \left| x \right|\,{\text{then}} \cr
& g\left( x \right) = \left| {f\left( x \right)} \right| = h\left( {f\left( x \right)} \right) \cr} $$
Since composition of two continuous functions is continuous, therefore $$g$$ is continuous if $$f$$ is continuous.
127.
The domain of $$F\left( x \right) = \frac{{{{\log }_2}\left( {x + 3} \right)}}{{{x^2} + 3x + 2}}$$ is :
$$\eqalign{
& {\text{We have, }}F\left( x \right) = \frac{{{{\log }_2}\left( {x + 3} \right)}}{{{x^2} + 3x + 2}} \cr
& \therefore \,F\left( x \right){\text{ is defined if }}x + 3 > 0{\text{ and }}{x^2} + 3x + 2 \ne 0 \cr
& \Rightarrow F\left( x \right){\text{ is defined if }}x > - 3{\text{ and }}x \ne - 1,\, - 2 \cr
& \Rightarrow {\text{Domain of }}F\left( x \right) = \left( { - 3,\,\infty } \right) - \left\{ { - 1,\, - 2} \right\} \cr} $$
128.
The function $$f:R \to R$$ defined by $$f\left( x \right) = {6^x} + {6^{\left| x \right|}}$$ is :
A
one-one and onto
B
many-one and onto
C
one-one and into
D
many-one and into
Answer :
one-one and into
$${6^x} > 0,\,\,{6^{\left| x \right|}} > 0$$ for all $$x\, \in \,R.$$ So, $$f$$ is into. For different $$x,\,{6^x}$$
and $${6^{\left| x \right|}}$$ are different positive numbers. Clearly, $$f$$ is one-one.
129.
Find the domain of $$f\left( x \right) = \sqrt {{{\left( {0.625} \right)}^{4 - 3x}} - {{\left( {1.6} \right)}^{x\left( {x + 8} \right)}}} $$