Function MCQ Questions & Answers in Calculus | Maths

Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

121. If the function $$f:R \to R$$   be such that $$f\left( x \right) = x - \left[ x \right],$$    where $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y,$$ then $${f^{ - 1}}\left( x \right)$$  is :

A $$\frac{1}{{x - \left[ x \right]}}$$
B $$\left[ x \right] - x$$
C not defined
D none of these
Answer :   not defined

122. The function $$f\left( x \right) = \sin \frac{{\pi x}}{{n!}} - \cos \frac{{\pi x}}{{\left( {n + 1} \right)!}}$$      is :

A not periodic
B periodic, with period $$2\left( {n\,!} \right)$$
C periodic, with period $${\left( {n + 1} \right)}$$
D none of these
Answer :   none of these

123. The period of the function $$f\left( x \right) = 3\sin \frac{{\pi x}}{3} + 4\cos \frac{{\pi x}}{4}$$      is :

A 6
B 24
C 8
D $$2\pi $$
Answer :   24

124. A real valued function $$f\left( x \right)$$  satisfies the functional equation $$f\left( {x - y} \right) = f\left( x \right)f\left( y \right) - f\left( {a - x} \right)f\left( {a + y} \right)$$
where $$a$$ is a given constant and $$f\left( 0 \right) = 1,f\left( {2a - x} \right)$$     is equal to

A $$ - f\left( x \right)$$
B $$f\left( x \right)$$
C $$f\left( a \right) + f\left( {a - x} \right)$$
D $$f\left( { - x} \right)$$
Answer :   $$ - f\left( x \right)$$

125. Let $$f\left( x \right) = {\left( {x + 1} \right)^2} - 1,x \geqslant - 1$$
Statement -1 : The set $$\left\{ x \right.:f\left( x \right) = {f^{ - 1}}\left( x \right) = \left\{ {0, - 1} \right\}$$
Statement-2 : $$f$$ is a bijection.

A Statement-1 is true, Statement-2 is true. Statement-2 is not a correct explanation for Statement-1.
B Statement-1 is true, Statement-2 is false.
C Statement-1 is false, Statement-2 is true.
D Statement-1 is true, Statement-2 is true. Statement-2 is a correct explanation for Statement-1.
Answer :   Statement-1 is true, Statement-2 is false.

126. Let $$f:R \to R$$   be any function. Define $$g:R \to R$$   by $$g\left( x \right) = \left| {f\left( x \right)} \right|$$   for all $${x.}$$ Then $${g}$$ is

A onto if $$f$$ is onto
B one-one if $$f$$ is one-one
C continuous if $$f$$ is continuous
D differentiable if $$f$$ is differentiable.
Answer :   continuous if $$f$$ is continuous

127. The domain of $$F\left( x \right) = \frac{{{{\log }_2}\left( {x + 3} \right)}}{{{x^2} + 3x + 2}}$$     is :

A $$R - \left\{ { - 1,\, - 2} \right\}$$
B $$\left( { - 2,\,\infty } \right)$$
C $$R - \left\{ { - 1,\, - 2 - 3} \right\}$$
D $$\left( { - 3,\,\infty } \right) - \left\{ { - 1,\, - 2} \right\}$$
Answer :   $$\left( { - 3,\,\infty } \right) - \left\{ { - 1,\, - 2} \right\}$$

128. The function $$f:R \to R$$   defined by $$f\left( x \right) = {6^x} + {6^{\left| x \right|}}$$    is :

A one-one and onto
B many-one and onto
C one-one and into
D many-one and into
Answer :   one-one and into

129. Find the domain of $$f\left( x \right) = \sqrt {{{\left( {0.625} \right)}^{4 - 3x}} - {{\left( {1.6} \right)}^{x\left( {x + 8} \right)}}} $$

A $$\left[ { - 3,\,2} \right]$$
B $$\left[ { 1,\,4} \right]$$
C $$\left[ {2,\,5} \right]$$
D $$\left[ { - 4,\, - 1} \right]$$
Answer :   $$\left[ { - 4,\, - 1} \right]$$

130. Let $$f\left( x \right) = {\left( {{x^{12}} - {x^9} + {x^4} - x + 1} \right)^{ - \frac{1}{2}}}.$$       The domain of the function is :

A $$\left( {1,\, + \infty } \right)$$
B $$\left( { - \infty ,\, - 1} \right)$$
C $$\left( { - 1,\,1} \right)$$
D $$\left( { - \infty ,\, + \infty } \right)$$
Answer :   $$\left( { - \infty ,\, + \infty } \right)$$