Function MCQ Questions & Answers in Calculus | Maths
Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
141.
Let $$f:N \to Y$$ be a function defined as $$f\left( x \right) = 4x + 3$$ where $$Y = \left\{ {y \in N:y = 4x + 3\,{\text{for}}\,{\text{some}}\,x \in N} \right\}.$$
Show that $$f$$ is invertible and its inverse is
A
$$g\left( y \right) = \frac{{3y + 4}}{3}$$
B
$$g\left( y \right) = 4 + \frac{{y + 3}}{4}$$
C
$$g\left( y \right) = \frac{{y + 3}}{4}$$
D
$$g\left( y \right) = \frac{{y - 3}}{4}$$
Answer :
$$g\left( y \right) = \frac{{y - 3}}{4}$$
Clearly $$f$$ is one one and onto, so invertible
$$\eqalign{
& {\text{Also}}\,f\left( x \right) = 4x + 3 = y \Rightarrow x = \frac{{y - 3}}{4} \cr
& \therefore g\left( y \right) = \frac{{y - 3}}{4} \cr} $$
142.
Let $$f\left( x \right) = \frac{x}{{1 - x}}$$ and $$'a'$$ be a real number. If $${x_0} = a,\,{x_1} = f\left( {{x_0}} \right),\,{x_2} = f\left( {{x_1}} \right),\,{x_3} = f\left( {{x_2}} \right).....$$ If $${x_{2009}} = 1,$$ then the value of $$a$$ is :
143.
Let function $$f:R \to R$$ be defined by $$f\left( x \right) = 2x + \sin x$$ for $$x \in R,$$ then $$f$$ is
A
one-to-one and onto
B
one-to-one but NOT onto
C
onto but NOT one-to-one
D
neither one-to-one nor onto
Answer :
one-to-one and onto
$$\eqalign{
& {\text{Given}}\,{\text{that}}\,f\left( x \right) = 2x + \sin x,\,\,x \in R \Rightarrow f'\left( x \right) = 2 + \cos x \cr
& {\text{But}}\, - 1 \leqslant \cos x \leqslant 1 \Rightarrow \,1 \leqslant 2 + \cos x \leqslant 3 \Rightarrow 1 \leqslant 2 + \cos x \leqslant 3 \cr
& \therefore f'\left( x \right) > 0,\forall x \in R \cr} $$
$$ \Rightarrow f\left( x \right)$$ is strictly increasing and hence one-one
Also as $$x \to \infty ,f\left( x \right) \to \infty \,{\text{and}}\,x \to - \infty ,f\left( x \right) \to - \infty $$
$$\therefore $$ Range of $$f\left( x \right) = R = $$ domain of $$f\left( x \right) \Rightarrow f\left( x \right)$$ is onto.
Thus, $$f\left( x \right)$$ is one-one and onto.
144.
Domain of definition of the function $$f\left( x \right) = \frac{3}{{4 - {x^2}}} + {\log _{10}}\left( {{x^3} - x} \right),$$ is
145.
The function $$f:\left[ {0,3} \right] \to \left[ {1,29} \right],$$ defined by $$f\left( x \right) = 2{x^3} - 15{x^2} + 36x + 1,$$ is
A
one-one and onto
B
onto but not one-one
C
one-one but not onto
D
neither one-one nor onto
Answer :
onto but not one-one
$$\eqalign{
& {\text{We}}\,{\text{have}}\,f\left( x \right) = 2{x^3} - 15{x^2} + 36x + 1 \cr
& \Rightarrow f'\left( x \right) = 6{x^2} - 30x + 36 \cr
& = 6\left( {{x^2} - 5x + 6} \right) \cr
& = 6\left( {x - 2} \right)\left( {x - 3} \right) \cr
& \because f'\left( x \right) > 0\forall x \in \left[ {0,2} \right]\,{\text{and}}\,f'\left( x \right) < 0\,\forall \,x \in \left[ {2,3} \right] \cr} $$
$$\therefore f\left( x \right)$$ is increasing on [0, 2] and decreasing on [2,3]
$$\therefore f\left( x \right)$$ is many one on [0, 3]
$${\text{Also}}\,f\left( 0 \right) = 1,f\left( 2 \right) = 29,f\left( 3 \right) = 28$$
$$\therefore $$ Global min = 1 and Global max = 29
i.e., Range of $$f$$ = [1, 29] = codomain
$$\therefore f$$ is onto.
146.
If $$f:\left[ {0,\infty } \right) \to \left[ {0,\infty } \right)$$ and $$\,f\left( x \right) = \frac{x}{{1 + x}}$$ then $$f$$ is
A
one-one and onto
B
one-one but not onto
C
onto but not one-one
D
neither one-one nor onto
Answer :
one-one but not onto
Given that $$f:\left[ {0,\infty } \right) \to \left[ {0,\infty } \right)$$
Such that $$\,f\left( x \right) = \frac{x}{{1 + x}}$$
Then $$f'\left( x \right) = \frac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}} = \frac{1}{{{{\left( {1 + x} \right)}^2}}} > 0\forall x$$
$$\therefore f$$ is an increasing function $$ \Rightarrow f$$ is one-one.
Also, $${D_f} = \left[ {0,\infty } \right)$$
And for range let $$\frac{x}{{1 + x}} = y \Rightarrow x = \frac{y}{{1 - y}}$$
$$x \geqslant 0 \Rightarrow 0 \leqslant y < 1$$
$$\therefore {R_f} = \left[ {0,1} \right) \ne \,{\text{Co - domain}}$$
$$\therefore f$$ is not onto.
147.
The range of the function $$f\left( x \right) = {x^2} + \frac{1}{{{x^2} + 1}}$$ is :
A
$$\left[ {1,\, + \infty } \right)$$
B
$$\left[ {2,\, + \infty } \right)$$
C
$$\left[ {\frac{3}{2},\, + \infty } \right)$$
D
none of these
Answer :
$$\left[ {1,\, + \infty } \right)$$
$$\eqalign{
& f\left( x \right) = {x^2} + \frac{1}{{{x^2} + 1}} - 1 + 1 = 1 + {x^2} - \frac{{{x^2}}}{{1 + {x^2}}} \cr
& = 1 + {x^2}\left( {1 - \frac{1}{{1 + {x^2}}}} \right) \geqslant 1{\text{ for all }}x\, \in \,R \cr} $$
The domain $$f=R.$$ Clearly, as $$x$$ increases $$f\left( x \right)$$ increases.
148.
The graph of the function $$y = f\left( x \right)$$ is symmetrical about the line $$x = 2,$$ then
A
$$f\left( x \right) = - f\left( { - x} \right)$$
Let us consider a graph symm. with respect to line $$x = 2$$ as shown in the figure.
$$\eqalign{
& {\text{From the figure }}f\left( {{x_1}} \right) = f\left( {{x_2}} \right),\,{\text{where}}\,{x_1} = 2 - x\,{\text{and}}\,{x_2} = 2 + x \cr
& \therefore f\left( {2 - x} \right) = f\left( {2 + x} \right) \cr} $$
149.
If $$f\left( x \right) = \frac{{{2^x} + {2^{ - x}}}}{2},$$ then $$f\left( {x + y} \right).f\left( {x - y} \right)$$ is equal to :