Function MCQ Questions & Answers in Calculus | Maths

Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

141. Let $$f:N \to Y$$   be a function defined as $$f\left( x \right) = 4x + 3$$    where $$Y = \left\{ {y \in N:y = 4x + 3\,{\text{for}}\,{\text{some}}\,x \in N} \right\}.$$
Show that $$f$$ is invertible and its inverse is

A $$g\left( y \right) = \frac{{3y + 4}}{3}$$
B $$g\left( y \right) = 4 + \frac{{y + 3}}{4}$$
C $$g\left( y \right) = \frac{{y + 3}}{4}$$
D $$g\left( y \right) = \frac{{y - 3}}{4}$$
Answer :   $$g\left( y \right) = \frac{{y - 3}}{4}$$

142. Let $$f\left( x \right) = \frac{x}{{1 - x}}$$   and $$'a'$$  be a real number. If $${x_0} = a,\,{x_1} = f\left( {{x_0}} \right),\,{x_2} = f\left( {{x_1}} \right),\,{x_3} = f\left( {{x_2}} \right).....$$           If $${x_{2009}} = 1,$$   then the value of $$a$$ is :

A $$0$$
B $$\frac{{2009}}{{2010}}$$
C $$\frac{1}{{2009}}$$
D $$\frac{1}{{2010}}$$
Answer :   $$\frac{1}{{2010}}$$

143. Let function $$f:R \to R$$   be defined by $$f\left( x \right) = 2x + \sin x$$    for $$x \in R,$$  then $$f$$ is

A one-to-one and onto
B one-to-one but NOT onto
C onto but NOT one-to-one
D neither one-to-one nor onto
Answer :   one-to-one and onto

144. Domain of definition of the function $$f\left( x \right) = \frac{3}{{4 - {x^2}}} + {\log _{10}}\left( {{x^3} - x} \right),$$       is

A $$\left( { - 1,0} \right) \cup \left( {1,2} \right) \cup \left( {2,\infty } \right)$$
B $$\left( {a,2} \right)$$
C $$\left( { - 1,0} \right) \cup \left( {a,2} \right)$$
D $$\left( {1,2} \right) \cup \left( {2,\infty } \right).$$
Answer :   $$\left( { - 1,0} \right) \cup \left( {1,2} \right) \cup \left( {2,\infty } \right)$$

145. The function $$f:\left[ {0,3} \right] \to \left[ {1,29} \right],$$     defined by $$f\left( x \right) = 2{x^3} - 15{x^2} + 36x + 1,$$      is

A one-one and onto
B onto but not one-one
C one-one but not onto
D neither one-one nor onto
Answer :   onto but not one-one

146. If $$f:\left[ {0,\infty } \right) \to \left[ {0,\infty } \right)$$     and $$\,f\left( x \right) = \frac{x}{{1 + x}}$$    then $$f$$ is

A one-one and onto
B one-one but not onto
C onto but not one-one
D neither one-one nor onto
Answer :   one-one but not onto

147. The range of the function $$f\left( x \right) = {x^2} + \frac{1}{{{x^2} + 1}}$$     is :

A $$\left[ {1,\, + \infty } \right)$$
B $$\left[ {2,\, + \infty } \right)$$
C $$\left[ {\frac{3}{2},\, + \infty } \right)$$
D none of these
Answer :   $$\left[ {1,\, + \infty } \right)$$

148. The graph of the function $$y = f\left( x \right)$$   is symmetrical about the line $$x = 2,$$  then

A $$f\left( x \right) = - f\left( { - x} \right)$$
B $$f\left( {2 + x} \right) = f\left( {2 - x} \right)$$
C $$f\left( x \right) = f\left( { - x} \right)$$
D $$f\left( {x + 2} \right) = f\left( {x - 2} \right)$$
Answer :   $$f\left( {2 + x} \right) = f\left( {2 - x} \right)$$

149. If $$f\left( x \right) = \frac{{{2^x} + {2^{ - x}}}}{2},$$    then $$f\left( {x + y} \right).f\left( {x - y} \right)$$     is equal to :

A $$\frac{1}{2}\left[ {f\left( {x + y} \right) + f\left( {x - y} \right)} \right]$$
B $$\frac{1}{2}\left[ {f\left( {2x} \right) + f\left( {2y} \right)} \right]$$
C $$\frac{1}{2}\left[ {f\left( {x + y} \right).f\left( {x - y} \right)} \right]$$
D none of these
Answer :   $$\frac{1}{2}\left[ {f\left( {2x} \right) + f\left( {2y} \right)} \right]$$

150. The domain of $$f\left( x \right) = \frac{1}{{\sqrt {2x - 1} }} - \sqrt {1 - {x^2}} $$      is :

A $$\left] {\frac{1}{2},\,1} \right[$$
B $$\left[ { - 1,\,\infty } \right[$$
C $$\left[ {1,\,\infty } \right[$$
D none of these
Answer :   $$\left] {\frac{1}{2},\,1} \right[$$