164.
If $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) - xy - 1$$ for all $$x,\,y,$$ and $$f\left( 1 \right) = 1$$ then the number of solutions of $$f\left( n \right) = n,\,n\, \in \,N,$$ is :
A
one
B
two
C
four
D
none of these
Answer :
one
$$\eqalign{
& {\text{Putting }}y = 1, \cr
& f\left( {x + 1} \right) = f\left( x \right) + f\left( 1 \right) - x - 1 = f\left( x \right) - x \cr
& \therefore f\left( {n + 1} \right) = f\left( n \right) - n < f\left( n \right) \cr
& {\text{So, }}f\left( n \right) < f\left( {n - 1} \right) < f\left( {n - 2} \right) < ...... < f\left( 1 \right) = 1 \cr
& \therefore f\left( n \right) = n{\text{ holds for }}n = 1\,\,{\text{only}} \cr} .$$
165.
Let $$f\left( x \right) = \frac{{\alpha x}}{{x + 1}},x \ne - 1.$$ Then, for what value of $$\alpha $$ is $$f\left( {f\left( x \right)} \right) = x?$$
166.
Let $$f\left( x \right) = \frac{x}{{{{\left( {1 + {x^n}} \right)}^{\frac{1}{n}}}}}$$ for $$n \geqslant 2$$ and $$g\left( x \right) = \underbrace {\left( {fofo...of} \right)}_{f\,{\text{occurs}}\,n\,{\text{times}}}\,\left( x \right).$$ Then $$\int {{x^{n - 2}}g\left( x \right)dx} $$ equals.
169.
Let $$f\left( x \right)$$ be defined on $$\left[ { - 2,\,2} \right]$$ and given by \[f\left( x \right) = \left\{ \begin{array}{l}
\,\, - 1,\,\,\,\,\,\, - 2 \le x \le 0\\
x - 1,\,\,\,\,\,0 \le x \le 2
\end{array} \right.\] then $$f\left( {\left| x \right|} \right)$$ is defined as :
A
\[f\left( {\left| x \right|} \right) = \left\{ \begin{array}{l}
\,\,\,\,1,\,\,\,\,\,\,\, - 2 \le x \le 0\\
1 - x,\,\,\,\,0 < x \le 2
\end{array} \right.\]
B
\[f\left( {\left| x \right|} \right) = x - 1\,\forall \,x\, \in \,R\]
C
\[f\left( {\left| x \right|} \right) = \left\{ \begin{array}{l}
- x - 1,\,\,\,\, - 2 \le x \le 0\\
\,\,\,x - 1,\,\,\,\,\,\,\,\,\,0 < x \le 2
\end{array} \right.\]
D
none of these
Answer :
\[f\left( {\left| x \right|} \right) = \left\{ \begin{array}{l}
- x - 1,\,\,\,\, - 2 \le x \le 0\\
\,\,\,x - 1,\,\,\,\,\,\,\,\,\,0 < x \le 2
\end{array} \right.\]
\[\begin{array}{l}
{\rm{We \,\,have, }}\,\,f\left( x \right) = \left\{ \begin{array}{l}
\,\, - 1,\,\,\,\, - 2 \le x \le 0\\
x - 1,\,\,\,\,\,\,0 \le x \le 2
\end{array} \right.\\
f\left( {\left| x \right|} \right) = \left\{ \begin{array}{l}
\,\, - 1,\,\,\,\,\,\, - 2 \le \left| x \right| \le 0\\
\left| x \right| - 1,\,\,\,\,0 \le \left| x \right| \le 2
\end{array} \right.\\
\Rightarrow f\left( {\left| x \right|} \right) = \left| x \right| - 1,\,0 \le \left| x \right| \le 2\,\left( {{\rm{as }} - 2 \le \left| x \right| \le 2{\rm{ \,\,is\,\,not\,\, possible}}} \right)\\
\Rightarrow f\left( {\left| x \right|} \right) = \left\{ \begin{array}{l}
- x - 1,\,\,\,\, - 2 \le x \le 0\\
\,\,\,\,\,x - 1,\,\,\,\,\,\,\,\,0 < x \le 2
\end{array} \right.
\end{array}\]
170.
The range of the function $$f\left( x \right) = {x^2} + 2x + 2$$ is :