Function MCQ Questions & Answers in Calculus | Maths

Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

31. If the function $$f:R - \left\{ {1, - 1} \right\}$$     A defined by $$f\left( x \right) = \frac{{{x^2}}}{{1 - {x^2}}},$$    is surjective, then $$A$$ is equal to:

A $$R - \left\{ { - 1} \right\}$$
B $$\left[ {0,\infty } \right)$$
C $$R - \left[ { - 1,0} \right)$$
D $$R - \left( { - 1,0} \right)$$
Answer :   $$R - \left[ { - 1,0} \right)$$

32. Let $$f\left( 1 \right) = 1$$   and $$f\left( n \right) = 2\sum\limits_{r = 1}^{n - 1} {f\left( r \right).} $$    Then $$\sum\limits_{n = 1}^m {f\left( n \right)} $$   is equal to :

A $${3^m} - 1$$
B $${3^{m}}$$
C $${3^{m - 1}}$$
D none of these
Answer :   $${3^{m - 1}}$$

33. Let $$f\left( x \right) = nx + n - \left[ {nx + n} \right] + \tan \frac{{\pi x}}{2},$$        where $$\left[ x \right]$$ is the greatest integer $$ \leqslant x$$  and $$n\, \in \,N.$$   It is :

A a periodic function of period 1
B a periodic function of period 4
C not periodic
D a periodic function of period 2
Answer :   a periodic function of period 2

34. A function whose graph is symmetrical about the y-axis is given by :

A $$f\left( x \right) = {\log _e}\left( {x + \sqrt {{x^2} + 1} } \right)$$
B $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right){\text{ for all }}x,\,y\, \in \,R$$
C $$f\left( x \right) = \cos \,x + \sin \,x$$
D none of these
Answer :   none of these

35. The domain of definition of the function $$f\left( x \right)$$  given by the equation $${2^x} + {2^y} = 2$$   is

A $$0 < x \leqslant 1$$
B $$0 \leqslant x \leqslant 1$$
C $$ - \infty < x \leqslant 0$$
D $$ - \infty < x < 1$$
Answer :   $$ - \infty < x < 1$$

36. Let $$f:R \to A = \left\{ {y\,|\,0 \leqslant y < \frac{\pi }{2}} \right\}$$      be a function such that $$f\left( x \right) = {\tan ^{ - 1}}\left( {{x^2} + x + k} \right),$$      where $$k$$ is a constant. The value of $$k$$ for which $$f$$ is an onto function, is :

A 1
B 0
C $$\frac{1}{4}$$
D none of these
Answer :   $$\frac{1}{4}$$

37. The domain and range of the function $$f$$ given by $$f\left( x \right) = 2 - \left| {x - 5} \right|$$    is :

A $${\text{Domain }} = {R^ + }{\text{, Range}}\, = \left( { - \infty ,\,1} \right]$$
B $${\text{Domain }} = R{\text{, Range}}\, = \left( { - \infty ,\,2} \right]$$
C $${\text{Domain }} = R{\text{, Range}}\, = \left( { - \infty ,\,2} \right)$$
D $${\text{Domain }} = {R^ + }{\text{, Range}}\, = \left( { - \infty ,\,2} \right]$$
Answer :   $${\text{Domain }} = R{\text{, Range}}\, = \left( { - \infty ,\,2} \right]$$

38. The domain of the function $$f\left( x \right) = {\log _{10}}\left( {1 + {x^3}} \right)$$      is :

A $$\left( { - 1,\, + \infty } \right)$$
B $$\left( {0,\, + \infty } \right)$$
C $$\left[ {0,\, + \infty } \right)$$
D $$\left( { - 1,\,0} \right)$$
Answer :   $$\left( {0,\, + \infty } \right)$$

39. If $$g\left\{ {f\left( x \right)} \right\} = \left| {\sin \,x} \right|$$    and $$f\left\{ {g\left( x \right)} \right\} = {\left( {\sin \,\sqrt x } \right)^2}$$     then :

A $$f\left( x \right) = {\sin ^2}x,\,g\left( x \right) = \sqrt x $$
B $$f\left( x \right) = \sin \,x,\,g\left( x \right) = \left| x \right|$$
C $$f\left( x \right) = {x^2},\,g\left( x \right) = \sin \,\sqrt x $$
D $$f$$ and $$g$$ cannot be determined
Answer :   $$f\left( x \right) = {\sin ^2}x,\,g\left( x \right) = \sqrt x $$

40. $$f\left( x \right) = \frac{{x\left( {x - p} \right)}}{{q - p}} + \frac{{x\left( {x - q} \right)}}{{p - q}},\,p \ne q.$$        What is the value of $$f\left( p \right) + f\left( q \right) = ?$$

A $$f\left( {p - q} \right)$$
B $$f\left( {p + q} \right)$$
C $$f\left( {p\left( {p + q} \right)} \right)$$
D $$f\left( {q\left( {p - q} \right)} \right)$$
Answer :   $$f\left( {p + q} \right)$$