Function MCQ Questions & Answers in Calculus | Maths

Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

51. If $$f\left( {x + 1} \right) + f\left( {x - 1} \right) = 2f\left( x \right)$$      and $$f\left( 0 \right) = 0$$   then $$f\left( n \right),\,n\, \in \,N,$$    is :

A $$nf\left( 1 \right)$$
B $${\left\{ {f\left( 1 \right)} \right\}^n}$$
C 0
D none of these
Answer :   $$nf\left( 1 \right)$$

52. If $$f:R \to S,$$   defined by $$f\left( x \right) = \sin - \sqrt 3 \cos x + 1,$$      is onto, then the interval of $$S$$ is

A [-1, 3]
B [-1, 1]
C [0, 1]
D [0, 3]
Answer :   [-1, 3]

53. If $$f$$ and $$g$$ are two functions defined as $$f\left( x \right) = x + 2,\,x \leqslant 0;\,g\left( x \right) = 3,\,x \geqslant 0,$$        then the domain of $$f + g$$  is :

A $$\left\{ 0 \right\}$$
B $$\left[ {0,\,\infty } \right)$$
C $$\left( { - \infty ,\,\infty } \right)$$
D $$\left( { - \infty ,\,0} \right)$$
Answer :   $$\left\{ 0 \right\}$$

54. The domain of the function $$f\left( x \right) = \sqrt {\frac{1}{{\left| {x - 2} \right| - \left( {x - 2} \right)}}} $$      is :

A $$\left( { - \infty ,\,2} \right]$$
B $$\left( {2,\,\infty } \right)$$
C $$\left( { - \infty ,\,2} \right)$$
D $$\left[ {2,\,\infty } \right)$$
Answer :   $$\left( { - \infty ,\,2} \right)$$

55. Let $$f\left( x \right) = \frac{{\alpha {x^2}}}{{x + 1}},\,x \ne - 1.$$     The value of $$\alpha $$ for which $$f\left( a \right) = a,\,\left( {a \ne 0} \right)$$    is :

A $$1 - \frac{1}{a}$$
B $$\frac{1}{a}$$
C $$1 + \frac{1}{a}$$
D $$\frac{1}{a} - 1$$
Answer :   $$1 + \frac{1}{a}$$

56. If $$f:\left[ {1,\infty } \right) \to \left[ {2,\infty } \right)$$     is given by $$f\left( x \right) = x + \frac{1}{x}$$   then $${f^{ - 1}}\left( x \right)$$   equals

A $$\frac{{\left( {x + \sqrt {{x^2} - 4} } \right)}}{2}$$
B $$\frac{x}{{\left( {1 + {x^2}} \right)}}$$
C $$\frac{{\left( {x - \sqrt {{x^2} - 4} } \right)}}{2}$$
D $$1 + \sqrt {{x^2} - 4} $$
Answer :   $$\frac{{\left( {x + \sqrt {{x^2} - 4} } \right)}}{2}$$

57. If $$f:R \to R$$   is defined by $$f\left( x \right) = 3x + \left| x \right|,$$    then $$f\left( {2x} \right) - f\left( { - x} \right) - 6x = ?$$

A $$f\left( x \right)$$
B $$2f\left( x \right)$$
C $$ - f\left( x \right)$$
D $$f\left( { - x} \right)$$
Answer :   $$f\left( x \right)$$

58. Let $$f$$ be a function satisfying $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$     for all $$x,\,y\, \in \,R.$$   If $$f\left( 1 \right) = k$$   then $$f\left( n \right),\,n\, \in \,N,$$   is equal to :

A $${k^n}$$
B $$nk$$
C $${n^k}$$
D none of these
Answer :   $$nk$$

59. Let $$f:\left( { - \infty ,\,1} \right] \to \left( { - \infty ,\,1} \right]$$     such that $$f\left( x \right) = x\left( {2 - x} \right).$$    Then $${f^{ - 1}}\left( x \right)$$   is :

A $$1 + \sqrt {1 - x} $$
B $$1 - \sqrt {1 - x} $$
C $$\sqrt {1 - x} $$
D none of these
Answer :   $$1 - \sqrt {1 - x} $$

60. The domain of the real valued function $$f\left( x \right) = \sqrt {5 - 4x - {x^2}} + {x^2}\log \left( {x + 4} \right)$$        is :

A $$\left( { - 5,\,1} \right)$$
B $$ - 5 \leqslant x\,{\text{and }}x \geqslant 1$$
C $$\left( { - 4,\,1} \right]$$
D $$\phi $$
Answer :   $$\left( { - 4,\,1} \right]$$