Function MCQ Questions & Answers in Calculus | Maths
Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
61.
The Domain for which the function $$f\left( x \right) = 2{x^2} - 1$$ and $$g\left( x \right) = 1 - 3x$$ is equal, i.e., $$f\left( x \right) = g\left( x \right),$$ is :
$$\eqalign{
& {\text{For }}f\left( x \right) = g\left( x \right) \cr
& \Rightarrow 2{x^2} - 1 = 1 - 3x \cr
& \Rightarrow 2{x^2} + 3x - 2 = 0 \cr
& \Rightarrow 2{x^2} + 4x - x - 2 = 0 \cr
& \Rightarrow 2x\left( {x + 2} \right) - 1\left( {x + 2} \right) = 0 \cr
& \Rightarrow \left( {x + 2} \right)\left( {2x - 1} \right) = 0 \cr
& \Rightarrow x = - 2,\,\frac{1}{2} \cr} $$
$$\therefore $$ The domain for which the function $$f\left( x \right) = g\left( x \right){\text{ is }}\left\{ { - 2,\,\frac{1}{2}} \right\}$$
62.
If $$f\left( x \right) = \frac{1}{{1 - x}},\,x \ne 0,\,1,$$ then the graph of the function $$y = f\left\{ {f\left( {f\left( x \right)} \right)} \right\},\,x > 1,$$ is :
A
a circle
B
an ellipse
C
a straight line
D
a pair of straight lines
Answer :
a straight line
$$\eqalign{
& f\left\{ {f\left( x \right)} \right\} = \frac{1}{{1 - f\left( x \right)}} = \frac{1}{{1 - \frac{1}{{1 - x}}}} = \frac{{1 - x}}{{ - x}} = \frac{{x - 1}}{x} \cr
& \therefore f\left\{ {f\left( {f\left( x \right)} \right)} \right\} = \frac{1}{{1 - f\left\{ {f\left( x \right)} \right\}}} = \frac{1}{{1 - \frac{{x - 1}}{x}}} = x \cr
& \therefore {\text{ the graph has the equation }}y = x \cr} $$
63.
The domain of the function $$f\left( x \right) = {\log _e}\left( {x - \left[ x \right]} \right),$$ where $$\left[ \cdot \right]$$ denotes the greatest integer function, is :
A
$$R$$
B
$$R-Z$$
C
$$\left( {0,\, + \infty } \right)$$
D
none of these
Answer :
$$R-Z$$
For the function to be defined the argument of the logarithm must be greater than zero.
$$\eqalign{
& \therefore \,x - \left[ x \right] > 0 \cr
& x - \left[ x \right] = \left\{ x \right\}{\text{ where}}\left\{ \cdot \right\}{\text{ denotes the fractional part}} \cr
& \therefore \,\left\{ x \right\} > 0 \cr} $$
This is always true unless $$x$$ is an integer.
Therefore, answer is option 'B'.
64.
If $${\log _{\frac{1}{2}}}\left( {{x^2} - 5x + 7} \right) > 0,$$ then exhaustive range of values of $$x$$ is :
65.
If the function $$f:\left[ {1,\, + \infty } \right) \to \left[ {1,\, + \infty } \right)$$ is defined by $$f\left( x \right) = {2^{x\left( {x - 1} \right)}}$$ then $${f^{ - 1}}\left( x \right)$$ is :
A
$${\left( {\frac{1}{2}} \right)^{x\left( {x - 1} \right)}}$$
66.
Let $$R$$ be the set of real numbers. If $$f:R \to R$$ is a function defined by $$f\left( x \right) = {x^2},$$ then $$f$$ is:
A
Injective but not surjective
B
Surjective but not injective
C
Bijective
D
None of these.
Answer :
None of these.
$$f\left( x \right) = {x^2}$$ is many one as $$f\left( 1 \right) = f\left( { - 1} \right) = 1$$
Also $$f$$ is into as $$- ve$$ real number have no pre-image.
$$\therefore F$$ is neither injective nor surjective.
67.
The function $$f\left( x \right) = \left| {px - q} \right| + r\left| x \right|,x \in \left( { - \infty ,\infty } \right)$$ where $$p > 0,\,q > 0,\,r > 0$$ assumes its minimum value only on one point if
A
$$p \ne q$$
B
$$r \ne q$$
C
$$r \ne p$$
D
$$p = q = r$$
Answer :
$$r \ne p$$
$$f(x) = \left| {px - q} \right| + r\left| x \right|$$
\[ = \left\{ {\begin{array}{*{20}{c}}
{ - px + q - rx,}\\
{ - px + q + rx,}\\
{px - q + rx,}
\end{array}\,\,\begin{array}{*{20}{c}}
{x \le 0}\\
{0 < x \le \frac{q}{p}}\\
{\frac{q}{p} < x}
\end{array}} \right.\]
$$\eqalign{
& {\text{For}}\,r = p,f'\left( x \right) < 0\,{\text{if}}\,x < 0 \cr
& = 0\,{\text{if}}\,0 < x < \frac{q}{p} \cr
& > 0\,{\text{if}}\,x > \frac{q}{p} \cr} $$
From graph (i) infinite many points for min value of $$f\left( x \right)$$
$$\eqalign{
& {\text{for}}\,r < p,f'\left( x \right) < 0\,{\text{if}}\,x \leqslant 0 \cr
& < 0\,{\text{if}}\,{\text{0 < }}\,x \leqslant \frac{q}{p} \cr
& > 0\,{\text{if}}\,x < \frac{q}{p} \cr} $$
From graph (ii) only pt. of min of $$f\left( x \right)$$ at $$x = \frac{q}{p}$$
$$\eqalign{
& {\text{For}}\,r > p,f'\left( x \right) < 0\,{\text{if}}\,x \leqslant 0 \cr
& > 0\,{\text{if}}\,0 < x \cr} $$
From graph (iii) only one pt. of min of $$f\left( x \right)$$ at $$x = 0$$
68.
Which of the following functions is periodic?
A
$$f\left( x \right) = x - \left[ x \right]$$ where $$\left[ x \right]$$ denotes the largest integer less than or equal to the real number $$x$$
B
$$f\left( x \right) = \sin \frac{1}{x}\,{\text{for}}\,x \ne 0,f\left( 0 \right) = 0$$
C
$$f\left( x \right) = x\cos x$$
D
none of these
Answer :
$$f\left( x \right) = x - \left[ x \right]$$ where $$\left[ x \right]$$ denotes the largest integer less than or equal to the real number $$x$$
\[f\left( x \right) = x - \left[ x \right] = \left\{ {\begin{array}{*{20}{c}}
{ \ldots .}\\
{\begin{array}{*{20}{c}}
{x - 1,}\\
{\begin{array}{*{20}{c}}
{x - 2,}\\
{x - 3,}
\end{array}}
\end{array}}\\
{ \ldots .}
\end{array}\,\,\begin{array}{*{20}{c}}
{1 \le x < 2}\\
{2 \le x < 3}\\
{3 \le x < 4}
\end{array}} \right.\]
graph of function is
Clearly it is a periodic function with period 1.
$$\therefore \left( a \right)$$ is the correct alternative.
69.
Let $$g\left( x \right) = 1 + x - \left[ x \right]$$ and \[f\left( x \right)\left\{ {\begin{array}{*{20}{c}}
{ - 1,}\\
{0,}\\
{1,}
\end{array}} \right.\,\begin{array}{*{20}{c}}
{x < 0}\\
{x = 0}\\
{x > 0}
\end{array}.\] Then for all $$x,f\left( {g\left( x \right)} \right)$$ is equal to
A
$$x$$
B
1
C
$$f\left( x \right)$$
D
$$g\left( x \right)$$
Answer :
1
$$g\left( x \right) = 1 + x - \left[ x \right];$$
\[f\left( x \right)\left\{ {\begin{array}{*{20}{c}}
{ - 1,}\\
{0,}\\
{1,}
\end{array}} \right.\,\begin{array}{*{20}{c}}
{x < 0}\\
{x = 0}\\
{x > 0}
\end{array}\]
For integral values of $$x;g\left( x \right) = 1$$
For $$x < 0;$$ (but not integral value) $$x - \left[ x \right] > 0 \Rightarrow g\left( x \right) > 1$$
For $$x > 0;$$ (but not integral value) $$x - \left[ x \right] > 0 \Rightarrow g\left( x \right) > 1$$
$$\therefore g\left( x \right) \geqslant 1,\forall x\,\therefore f\left( {g\left( x \right)} \right) = 1\forall x$$
70.
Let $$\sum\limits_{k = 1}^{10} f \left( {a + k} \right) = 16\left( {{2^{10}} - 1} \right),$$ where the function $$f$$ satisfies $$f\left( {x + y} \right) = f\left( x \right)f\left( y \right)$$ for all natural numbers $$x,y$$ and $$f\left( a \right) = 2.$$ Then the natural number $$'a'$$ is: