Function MCQ Questions & Answers in Calculus | Maths
Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
71.
Let $$f\left( x \right) = \cos \,3x + \sin \,\sqrt 3 x.$$ Then $$f\left( x \right)$$ is :
A
a periodic function of period $$2\pi $$
B
a periodic function of period $$\sqrt 3 \pi $$
C
not a periodic function
D
none of these
Answer :
not a periodic function
$$\cos \,3x$$ has the period $$\frac{{2\pi }}{3}$$ and $$\sin \,\sqrt 3 x$$ has the period $$\frac{{2\pi }}{{\sqrt 3 }}.$$
As $$\frac{{2\pi }}{3}$$ and $$\frac{{2\pi }}{{\sqrt 3 }}$$ do not have a common multiple, $$f\left( x \right)$$ is not periodic.
72.
Which of the following functions are periodic ?
A
$$f\left( x \right) = \log \,x,\,x > 0$$
B
$$f\left( x \right) = {e^x},\,x\, \in \,R$$
C
$$f\left( x \right) = x - \left[ x \right],\,x\, \in \,R$$
D
$$f\left( x \right) = x + \left[ x \right],\,x\, \in \,R$$
Answer :
$$f\left( x \right) = x - \left[ x \right],\,x\, \in \,R$$
$$f\left( x \right) = \log \,x,$$ is not periodic.
$$f\left( x \right) = {e^x},$$ is not periodic.
$$f\left( x \right) = x - \left[ x \right] = \left\{ x \right\},$$ has period 1
$$f\left( x \right) = x + \left[ x \right],$$ is not periodic.
73.
The range of the function $$f\left( x \right) = \frac{{{e^x} - {e^{\left| x \right|}}}}{{{e^x} + {e^{\left| x \right|}}}}$$ is :
74.
If $$f\left( x \right)$$ and $$g\left( x \right)$$ are periodic functions with periods 7 and 11, respectively, then the period of $$F\left( x \right) = f\left( x \right)g\left( {\frac{x}{5}} \right) - g\left( x \right)f\left( {\frac{x}{3}} \right)$$ is :
A
177
B
222
C
433
D
1155
Answer :
1155
The period of $$f\left( x \right)$$ is 7. So, the period of $$f\left( {\frac{x}{3}} \right)$$ is $$\frac{7}{{\frac{1}{3}}} = 21$$
The period of $$g\left( x \right)$$ is 11. So, the period of $$g\left( {\frac{x}{5}} \right)$$ is $$\frac{{11}}{{\frac{1}{5}}} = 55$$
Hence, $${T_1} = $$ period of $$f\left( x \right)g\left( {\frac{x}{5}} \right) = 7 \times 55 = 385$$
and $${T_2} = $$ period of $$g\left( x \right)f\left( {\frac{x}{3}} \right) = 11 \times 21 = 231$$
$$\eqalign{
& \therefore {\text{ Period of }}F\left( x \right) = {\text{L}}{\text{.C}}{\text{.M}}{\text{.}}\left\{ {{T_1},\,{T_2}} \right\} \cr
& = {\text{L}}{\text{.C}}{\text{.M}}{\text{.}}\left\{ {385,\,231} \right\} \cr
& = 7 \times 11 \times 3 \times 5 \cr
& = 1155 \cr} $$
75.
\[f\left( x \right) = \left\{ \begin{array}{l}
4,\,x < - 1\\
- 4x,\, - 1 \le x \le 0.
\end{array} \right.\]
If $$f\left( x \right)$$ is an even function in $$R$$ then the definition of $$f\left( x \right)$$ in $$\left( {0,\, + \infty } \right)$$ is :
A
\[f\left( x \right) = \left\{ \begin{array}{l}
4x,\,0 < x \le 1\\
4x,\,x > 1
\end{array} \right.\]
B
\[f\left( x \right) = \left\{ \begin{array}{l}
4x,\,0 < x \le 1\\
- 4,\,x > 1
\end{array} \right.\]
C
\[f\left( x \right) = \left\{ \begin{array}{l}
4,\,0 < x \le 1\\
4x,\,x > 1
\end{array} \right.\]
D
none of these
Answer :
\[f\left( x \right) = \left\{ \begin{array}{l}
4x,\,0 < x \le 1\\
4x,\,x > 1
\end{array} \right.\]
An even function is symmetrical about the $$y$$-axis.
Clearly from the graph, the definition given in option (A) is correct.
76.
\[{\rm{If\, }}f\left( x \right) = \left\{ \begin{array}{l}
{x^2}\sin \frac{{\pi x}}{2},\,\left| x \right| < 1\\
x\left| x \right|,\,\,\left| x \right| \ge 1
\end{array} \right.,\,{\rm{then\, }}f\left( x \right){\rm{ is:}}\]
78.
Let $$f\left( x \right) = \cos \sqrt {p}x ,$$ where $$p = \left[ a \right] = $$ the greatest integer less than or equal to $$a.$$ If the period of $$f\left( x \right)$$ is $$\pi $$ then :
A
$$a\, \in \,\,\left[ {4,\,5} \right]$$
B
$$a=4,\,5$$
C
$$a\, \in \,\,\left[ {4,\,5} \right)$$
D
none of these
Answer :
$$a\, \in \,\,\left[ {4,\,5} \right)$$
The period of $$f\left( x \right) = \frac{{2\pi }}{{\sqrt p }} = \pi $$ (from the question).
$$\eqalign{
& \therefore \sqrt p = 2{\text{ or }}p = 4 \cr
& \therefore \left[ a \right] = 4 \cr
& \therefore \,\,4 \leqslant a < 5 \cr} $$
79.
If $$f\left( {2x + 3y,\,2x - 7y} \right) = 20x,$$ then $$f\left( {x,y} \right)$$ equals :