Function MCQ Questions & Answers in Calculus | Maths

Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

71. Let $$f\left( x \right) = \cos \,3x + \sin \,\sqrt 3 x.$$     Then $$f\left( x \right)$$  is :

A a periodic function of period $$2\pi $$
B a periodic function of period $$\sqrt 3 \pi $$
C not a periodic function
D none of these
Answer :   not a periodic function

72. Which of the following functions are periodic ?

A $$f\left( x \right) = \log \,x,\,x > 0$$
B $$f\left( x \right) = {e^x},\,x\, \in \,R$$
C $$f\left( x \right) = x - \left[ x \right],\,x\, \in \,R$$
D $$f\left( x \right) = x + \left[ x \right],\,x\, \in \,R$$
Answer :   $$f\left( x \right) = x - \left[ x \right],\,x\, \in \,R$$

73. The range of the function $$f\left( x \right) = \frac{{{e^x} - {e^{\left| x \right|}}}}{{{e^x} + {e^{\left| x \right|}}}}$$    is :

A $$\left( { - \infty ,\,\infty } \right)$$
B $$\left[ {0,\,1} \right)$$
C $$\left( { - 1,\,0} \right]$$
D $$\left( { - 1,\,1} \right)$$
Answer :   $$\left( { - 1,\,0} \right]$$

74. If $$f\left( x \right)$$  and $$g\left( x \right)$$  are periodic functions with periods 7 and 11, respectively, then the period of $$F\left( x \right) = f\left( x \right)g\left( {\frac{x}{5}} \right) - g\left( x \right)f\left( {\frac{x}{3}} \right)$$       is :

A 177
B 222
C 433
D 1155
Answer :   1155

75. \[f\left( x \right) = \left\{ \begin{array}{l} 4,\,x < - 1\\ - 4x,\, - 1 \le x \le 0. \end{array} \right.\]
If $$f\left( x \right)$$  is an even function in $$R$$ then the definition of $$f\left( x \right)$$  in $$\left( {0,\, + \infty } \right)$$   is :

A \[f\left( x \right) = \left\{ \begin{array}{l} 4x,\,0 < x \le 1\\ 4x,\,x > 1 \end{array} \right.\]
B \[f\left( x \right) = \left\{ \begin{array}{l} 4x,\,0 < x \le 1\\ - 4,\,x > 1 \end{array} \right.\]
C \[f\left( x \right) = \left\{ \begin{array}{l} 4,\,0 < x \le 1\\ 4x,\,x > 1 \end{array} \right.\]
D none of these
Answer :   \[f\left( x \right) = \left\{ \begin{array}{l} 4x,\,0 < x \le 1\\ 4x,\,x > 1 \end{array} \right.\]

76. \[{\rm{If\, }}f\left( x \right) = \left\{ \begin{array}{l} {x^2}\sin \frac{{\pi x}}{2},\,\left| x \right| < 1\\ x\left| x \right|,\,\,\left| x \right| \ge 1 \end{array} \right.,\,{\rm{then\, }}f\left( x \right){\rm{ is:}}\]

A an even function
B an odd function
C a periodic function
D none of these
Answer :   an odd function

77. The domain of definition of $$f\left( x \right) = \frac{{{{\log }_2}\left( {x + 3} \right)}}{{{x^2} + 3x + 2}}$$     is

A $$\frac{R}{{\left\{ { - 1, - 2} \right\}}}$$
B $$\left( { - 2,\infty } \right)$$
C $$\frac{R}{{\left\{ { - 1, - 2, - 3} \right\}}}$$
D $$\frac{{\left( { - 3,\infty } \right)}}{{\left\{ { - 1, - 2} \right\}}}$$
Answer :   $$\frac{{\left( { - 3,\infty } \right)}}{{\left\{ { - 1, - 2} \right\}}}$$

78. Let $$f\left( x \right) = \cos \sqrt {p}x ,$$    where $$p = \left[ a \right] = $$   the greatest integer less than or equal to $$a.$$ If the period of $$f\left( x \right)$$  is $$\pi $$ then :

A $$a\, \in \,\,\left[ {4,\,5} \right]$$
B $$a=4,\,5$$
C $$a\, \in \,\,\left[ {4,\,5} \right)$$
D none of these
Answer :   $$a\, \in \,\,\left[ {4,\,5} \right)$$

79. If $$f\left( {2x + 3y,\,2x - 7y} \right) = 20x,$$      then $$f\left( {x,y} \right)$$  equals :

A $$7x - 3y$$
B $$7x + 3y$$
C $$3x - 7y$$
D $$3x + 7y$$
Answer :   $$7x + 3y$$

80. The range of the function $$f\left( x \right){ = ^{7 - x}}{P_{x - 3}}$$    is

A {1, 2, 3, 4, 5}
B {1, 2, 3, 4, 5, 6}
C {1, 2, 3, 4,}
D {1, 2, 3,}
Answer :   {1, 2, 3,}