83.
If $$f\left( x \right) = {x^2} + \lambda x + \mu $$ be an integral function of the integral variable $$x$$ then :
A
$$\lambda $$ is an integer and $$\mu $$ is a rational fraction
B
$$\lambda $$ and $$\mu $$ are integers
C
$$\mu $$ is an integer and $$\lambda $$ is a rational fraction
D
$$\lambda $$ and $$\mu $$ are rational fractions
Answer :
$$\lambda $$ and $$\mu $$ are integers
$${x^2} + \lambda x + \mu = $$ integer for all integer $$x.$$
When $$x = 0,\,\,{x^2} + \lambda x + \mu = 0 = $$ integer.
So, $$x\left( {x + \lambda } \right)$$ is an integer for all integral values of $$x.$$
Therefore, $$\lambda $$ is an integer.
84.
The range of the function $$f\left( x \right) = \left| {x - 1} \right| + \left| {x - 2} \right|,\, - 1 \leqslant x \leqslant 3,$$ is :
A
$$\left[ {1,\,3} \right]$$
B
$$\left[ {1,\,5} \right]$$
C
$$\left[ {3,\,5} \right]$$
D
none of these
Answer :
$$\left[ {1,\,5} \right]$$
If $$x < 1,\,f\left( x \right) = - \left( {x - 1} \right) - \left( {x - 2} \right) = - 2x + 3.$$ In this interval, $$f\left( x \right)$$ is decreasing.
If $$1 \leqslant x < 2,\,f\left( x \right) = x - 1 - \left( {x - 2} \right) = 1$$
In this interval, $$f\left( x \right)$$ is constant.
If $$2 \leqslant x \leqslant 3,\,f\left( x \right) = x - 1 + x - 2 = 2x - 3$$
In this interval, $$f\left( x \right)$$ is increasing.
$$\therefore \max \,f\left( x \right) = $$ the greatest among $$f\left( { - 1} \right)$$ and $$f\left( 3 \right) = 5,\,\,\min \,f\left( x \right) = f\left( 1 \right) = 1$$
So, range $$ = \left[ {1,\,5} \right].$$
85.
If $$f:{\bf{R}} \to {\bf{R}}\,\& \,g:{\bf{R}} \to {\bf{R}}$$ be two given function, then $$2\,\min \left\{ {f\left( x \right) - g\left( x \right),\,0} \right\}$$ equals :
A
$$f\left( x \right) + g\left( x \right) - \left| {g\left( x \right) - f\left( x \right)} \right|$$
B
$$f\left( x \right) + g\left( x \right) + \left| {g\left( x \right) - f\left( x \right)} \right|$$
C
$$f\left( x \right) - g\left( x \right) + \left| {g\left( x \right) - f\left( x \right)} \right|$$
D
$$f\left( x \right) - g\left( x \right) - \left| {g\left( x \right) - f\left( x \right)} \right|$$
Answer :
$$f\left( x \right) - g\left( x \right) - \left| {g\left( x \right) - f\left( x \right)} \right|$$
$$\eqalign{
& f:{\bf{R}} \to {\bf{R}}\,\& \,g:{\bf{R}} \to {\bf{R}} \cr
& {\text{We know that min}}\left\{ {{f_1}\left( x \right),\,{f_2}\left( x \right)} \right\} \cr
& = \frac{{\left( {{f_1}\left( x \right) + {f_2}\left( x \right)} \right) - \left| {{f_1}\left( x \right) - {f_2}\left( x \right)} \right|}}{2} \cr
& \therefore \,\min \left\{ {f\left( x \right) - g\left( x \right),\,0} \right\} \cr
& = \frac{{\left( {f\left( x \right) - g\left( x \right) + 0} \right) - \left| {f\left( x \right) - g\left( x \right) - 0} \right|}}{2} \cr
& = \frac{{\left( {f\left( x \right) - g\left( x \right)} \right) - \left| {f\left( x \right) - g\left( x \right)} \right|}}{2} \cr} $$
86.
Let $$f:R \to R$$ be a function such that $$f\left( x \right) = {x^3} - 6{x^2} + 11x - 6.$$ Then :
A
$$f$$ is one-one and into
B
$$f$$ is many-one and into
C
$$f$$ is one-one and onto
D
$$f$$ is many-one and onto
Answer :
$$f$$ is many-one and onto
$$f\left( x \right) = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)$$
$$\therefore f\left( 1 \right) = f\left( 2 \right) = f\left( 3 \right) = 0.$$ So, the function is many-one.
Clearly, for $$x < 0,\,f\left( x \right) < 0$$ and goes on decreasing as $$x$$ decreases.
For $$x > 3,\,f\left( x \right) > 0$$ and goes on increasing as $$x$$ increases.
$$\therefore \,f\left( x \right)$$ can have all real values. So, $$f$$ is onto.
87.
Which of the following statements is incorrect :
A
$$x\,\operatorname{sgn} \,x = \left| x \right|$$
B
$$\left| x \right|\operatorname{sgn} \,x = x$$
C
$$x\left( {\operatorname{sgn} \,x} \right)\left( {\operatorname{sgn} \,x} \right) = x$$
D
$$\left| x \right|{\left( {\operatorname{sgn} \,x} \right)^3} = \left| x \right|$$
Answer :
$$\left| x \right|{\left( {\operatorname{sgn} \,x} \right)^3} = \left| x \right|$$
88.
Let $$E = \left\{ {1,2,3,4} \right\}$$ and $$F = \left\{ {1,2} \right\}.$$ Then the number of onto functions from $$E$$ to $$F$$ is
A
14
B
16
C
12
D
8
Answer :
14
From $$E$$ to $$F$$ we can define, in all, $$2 \times 2 \times 2 \times 2 = 16$$ functions (2 options for each element of $$E$$ ) out of which 2 are into, when all the elements of $$E$$ either map to 1 or to 2.
∴ No. of onto functions $$= 16 - 2 = 14$$
89.
If $$f\left( {x + 1} \right) = {x^2} - 3x + 2,$$ then $$f\left( x \right)$$ is equal to :
A
$${x^2} - 5x - 6$$
B
$${x^2} + 5x - 6$$
C
$${x^2} + 5x + 6$$
D
$${x^2} - 5x + 6$$
Answer :
$${x^2} - 5x + 6$$
Given function is : $$f\left( {x + 1} \right) = {x^2} - 3x + 2$$
This function is valid for all real values of $$x.$$ So, putting $$x - 1$$ in place of $$x,$$ we get
$$\eqalign{
& f\left( x \right) = f\left( {x - 1 + 1} \right) \cr
& \Rightarrow f\left( x \right) = {\left( {x - 1} \right)^2} - 3\left( {x - 1} \right) + 2 \cr
& \Rightarrow f\left( x \right) = {x^2} - 2x + 1 - 3x + 3 + 2 \cr
& \Rightarrow f\left( x \right) = {x^2} - 5x + 6 \cr} $$
90.
The function $$f\left( x \right) = \sqrt {{e^{{{\cos }^{ - 1}}\left( {{{\log }_4}{x^2}} \right)}}} $$ is real valued. It is defined if :