Function MCQ Questions & Answers in Calculus | Maths

Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

81. Which of the following relation is NOT a function ?

A $$f = \left\{ {\left( {x,\,x} \right)|x\, \in \,R} \right\}$$
B $$g = \left\{ {\left( {x,\,3} \right)|x\, \in \,R} \right\}$$
C $$h = \left\{ {\left( {n,\,\frac{1}{n}} \right)|n\, \in \,I} \right\}$$
D $$t = \left\{ {\left( {n,\,{n^2}} \right)|n\, \in \,N} \right\}$$
Answer :   $$h = \left\{ {\left( {n,\,\frac{1}{n}} \right)|n\, \in \,I} \right\}$$

82. The function $$f\left( x \right) = \log \left( {x + \sqrt {{x^2} + 1} } \right),$$      is

A neither an even nor an odd function
B an even function
C an odd function
D a periodic function.
Answer :   an odd function

83. If $$f\left( x \right) = {x^2} + \lambda x + \mu $$     be an integral function of the integral variable $$x$$ then :

A $$\lambda $$ is an integer and $$\mu $$ is a rational fraction
B $$\lambda $$ and $$\mu $$ are integers
C $$\mu $$ is an integer and $$\lambda $$ is a rational fraction
D $$\lambda $$ and $$\mu $$ are rational fractions
Answer :   $$\lambda $$ and $$\mu $$ are integers

84. The range of the function $$f\left( x \right) = \left| {x - 1} \right| + \left| {x - 2} \right|,\, - 1 \leqslant x \leqslant 3,$$        is :

A $$\left[ {1,\,3} \right]$$
B $$\left[ {1,\,5} \right]$$
C $$\left[ {3,\,5} \right]$$
D none of these
Answer :   $$\left[ {1,\,5} \right]$$

85. If $$f:{\bf{R}} \to {\bf{R}}\,\& \,g:{\bf{R}} \to {\bf{R}}$$      be two given function, then $$2\,\min \left\{ {f\left( x \right) - g\left( x \right),\,0} \right\}$$     equals :

A $$f\left( x \right) + g\left( x \right) - \left| {g\left( x \right) - f\left( x \right)} \right|$$
B $$f\left( x \right) + g\left( x \right) + \left| {g\left( x \right) - f\left( x \right)} \right|$$
C $$f\left( x \right) - g\left( x \right) + \left| {g\left( x \right) - f\left( x \right)} \right|$$
D $$f\left( x \right) - g\left( x \right) - \left| {g\left( x \right) - f\left( x \right)} \right|$$
Answer :   $$f\left( x \right) - g\left( x \right) - \left| {g\left( x \right) - f\left( x \right)} \right|$$

86. Let $$f:R \to R$$   be a function such that $$f\left( x \right) = {x^3} - 6{x^2} + 11x - 6.$$      Then :

A $$f$$ is one-one and into
B $$f$$ is many-one and into
C $$f$$ is one-one and onto
D $$f$$ is many-one and onto
Answer :   $$f$$ is many-one and onto

87. Which of the following statements is incorrect :

A $$x\,\operatorname{sgn} \,x = \left| x \right|$$
B $$\left| x \right|\operatorname{sgn} \,x = x$$
C $$x\left( {\operatorname{sgn} \,x} \right)\left( {\operatorname{sgn} \,x} \right) = x$$
D $$\left| x \right|{\left( {\operatorname{sgn} \,x} \right)^3} = \left| x \right|$$
Answer :   $$\left| x \right|{\left( {\operatorname{sgn} \,x} \right)^3} = \left| x \right|$$

88. Let $$E = \left\{ {1,2,3,4} \right\}$$   and $$F = \left\{ {1,2} \right\}.$$  Then the number of onto functions from $$E$$  to $$F$$  is

A 14
B 16
C 12
D 8
Answer :   14

89. If $$f\left( {x + 1} \right) = {x^2} - 3x + 2,$$      then $$f\left( x \right)$$  is equal to :

A $${x^2} - 5x - 6$$
B $${x^2} + 5x - 6$$
C $${x^2} + 5x + 6$$
D $${x^2} - 5x + 6$$
Answer :   $${x^2} - 5x + 6$$

90. The function $$f\left( x \right) = \sqrt {{e^{{{\cos }^{ - 1}}\left( {{{\log }_4}{x^2}} \right)}}} $$      is real valued. It is defined if :

A $$x\, \in \left[ {\frac{1}{2},\,2} \right]$$
B $$x\, \in \left[ { - 2,\, - \frac{1}{2}} \right] \cup \left[ {\frac{1}{2},\,2} \right]$$
C $$x\, \in \left[ { - 2,\, - \frac{1}{2}} \right]$$
D none of these
Answer :   $$x\, \in \left[ { - 2,\, - \frac{1}{2}} \right] \cup \left[ {\frac{1}{2},\,2} \right]$$