14.
If $$\int {f\left( x \right)dx} = g\left( x \right) + c,$$ then $$\int {{f^{ - 1}}\left( x \right)dx} $$ is equal to :
A
$$x{f^{ - 1}}\left( x \right) + C$$
B
$$f\left( {{g^{ - 1}}\left( x \right)} \right) + C$$
C
$$x{f^{ - 1}}\left( x \right) - g\left( {{f^{ - 1}}\left( x \right)} \right) + C$$
D
$${g^{ - 1}}\left( x \right) + C$$
Answer :
$$x{f^{ - 1}}\left( x \right) - g\left( {{f^{ - 1}}\left( x \right)} \right) + C$$
Let $$I = \int {{f^{ - 1}}\left( x \right)dx} $$ and $${f^{ - 1}}\left( x \right) = t \Rightarrow x = f\left( t \right) \Rightarrow dx = f'\left( t \right)\,dt$$
Put value of $$dx$$ and $${f^{ - 1}}\left( x \right)$$ in $$I,$$ we get $$I = \int {tf'\left( t \right)dt} $$
Now, integrate it by parts, $$I = tf\left( t \right) - \int {f\left( t \right)} dt$$
Given, $$\int {f\left( x \right)dx = g} \left( x \right) + C$$
$$\therefore \,I = tf\left( t \right) - \left[ {g\left( t \right)} \right] + C$$
Now, by putting value of $$t,\,f\left( t \right)$$ and $$g\left( t \right)$$ we get,
$$I = x{f^{ - 1}}\left( x \right)g\left[ {{f^{ - 1}}\left( x \right)} \right] + C$$
15.
$$\int {{x^x}\left( {1 + \log \,x} \right)dx} $$ is equal to :
19.
If $$\int {g\left( x \right)dx = g\left( x \right)} ,$$ then $$\int {g\left( x \right)\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $$ is equal to :
A
$$g\left( x \right)f\left( x \right) - g\left( x \right)f'\left( x \right) + C$$
B
$$g\left( x \right)f'\left( x \right) + C$$
C
$$g\left( x \right)f\left( x \right) + C$$
D
$$g\left( x \right){f^2}\left( x \right) + C$$
Answer :
$$g\left( x \right)f\left( x \right) + C$$
$$\eqalign{
& \int {g\left( x \right)\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} \cr
& = \int {g\left( x \right)f\left( x \right)dx} + \int {g\left( x \right)f'\left( x \right)dx} \cr
& = f\left( x \right)\int {g\left( x \right)dx - } \int {\left\{ {f'\left( x \right)\int {g\left( x \right)} dx} \right\}dx + \int {g\left( x \right)f'\left( x \right)dx} } \cr
& = f\left( x \right)g\left( x \right) - \int {f'\left( x \right)g\left( x \right)dx + \int {g\left( x \right)f'\left( x \right)dx} } \,\,\,\left[ {{\text{Given }}\int {g\left( x \right)dx = g\left( x \right)} } \right] \cr
& = f\left( x \right)g\left( x \right) + c \cr} $$
20.
What is $$\int {{{\sec }^n}x\,\tan \,x\,dx} $$ equal to ?
Where $$'c’$$ is a constant of integration.
A
$$\frac{{{{\sec }^n}x}}{n} + c$$
B
$$\frac{{{{\sec }^{n - 1}}x}}{{n - 1}} + c$$
C
$$\frac{{{{\tan }^n}x}}{n} + c$$
D
$$\frac{{{{\tan }^{n - 1}}x}}{{n - 1}} + c$$
Answer :
$$\frac{{{{\sec }^n}x}}{n} + c$$
$$\eqalign{
& {\text{Let }}I = \int {{{\sec }^n}x\,\tan \,x\,dx} \cr
& {\text{Put, }}\sec \,x = t \Rightarrow \sec \,x\,\tan \,x\,dx = dt \cr
& \therefore \,I = \int {{t^n}.\frac{{dt}}{t}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\, = \int {{t^{n - 1}}dt} \cr
& \,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{t^n}}}{n} + c \cr
& \,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{{\sec }^n}x}}{n} + c \cr} $$
where $$'c’$$ is a constant of integration.