Indefinite Integration MCQ Questions & Answers in Calculus | Maths

Learn Indefinite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

31. $$\int {\sin \,2x.\log \,\cos \,x\,dx} $$     is equal to :

A $${\cos ^2}x\left( {\frac{1}{2} + \log \,\cos \,x} \right) + k$$
B $${\cos ^2}x.\log \,\cos \,x + k$$
C $${\cos ^2}x\left( {\frac{1}{2} - \log \,\cos \,x} \right) + k$$
D none of these
Answer :   $${\cos ^2}x\left( {\frac{1}{2} - \log \,\cos \,x} \right) + k$$

32. The integral $$\int {\frac{{{{\sin }^2}x\,{{\cos }^2}x}}{{{{\left( {{{\sin }^5}x + {{\cos }^3}x\,\,{{\sin }^2}x + {{\sin }^3}x\,\,{{\cos }^2}x + {{\cos }^5}x} \right)}^2}}}dx} $$           is equal to :
(where $$C$$ is a constant of integration)

A $$\frac{{ - 1}}{{3\left( {1 + {{\tan }^3}x} \right)}} + C$$
B $$\frac{1}{{1 + {{\cot }^3}x}} + C$$
C $$\frac{{ - 1}}{{1 + {{\cot }^3}x}} + C$$
D $$\frac{1}{{3\left( {1 + {{\tan }^3}x} \right)}} + C$$
Answer :   $$\frac{{ - 1}}{{3\left( {1 + {{\tan }^3}x} \right)}} + C$$

33. $$\int {\frac{{x - 1}}{{{{\left( {x + 1} \right)}^2}\sqrt {{x^3} + {x^2} + x} }}} dx$$       is equal to :

A $${\tan ^{ - 1}}\sqrt {\frac{{{x^2} + x + 1}}{x}} + C$$
B $$2\,{\tan ^{ - 1}}\sqrt {\frac{{{x^2} + x + 1}}{x}} + C$$
C $$3\,{\tan ^{ - 1}}\sqrt {\frac{{{x^2} + x + 1}}{x}} + C$$
D None of these
Answer :   $$2\,{\tan ^{ - 1}}\sqrt {\frac{{{x^2} + x + 1}}{x}} + C$$

34. $$\int {\frac{{dx}}{{\cos \,x - \sin \,x}}} $$     is equal to-

A $$\frac{1}{{\sqrt 2 }}\log \left| {\tan \left( {\frac{x}{2} + \frac{{3\pi }}{8}} \right)} \right| + C$$
B $$\frac{1}{{\sqrt 2 }}\log \left| {cot\left( {\frac{x}{2}} \right)} \right| + C$$
C $$\frac{1}{{\sqrt 2 }}\log \left| {\tan \left( {\frac{x}{2} - \frac{{3\pi }}{8}} \right)} \right| + C$$
D $$\frac{1}{{\sqrt 2 }}\log \left| {\tan \left( {\frac{x}{2} - \frac{\pi }{8}} \right)} \right| + C$$
Answer :   $$\frac{1}{{\sqrt 2 }}\log \left| {\tan \left( {\frac{x}{2} + \frac{{3\pi }}{8}} \right)} \right| + C$$

35. Let $$f\left( x \right) = \int {\frac{{{x^2}dx}}{{\left( {1 + {x^2}} \right)\left( {1 + \sqrt {1 + {x^2}} } \right)}}} $$       and $$f\left( 0 \right) = 0.$$   Then $$f\left( 1 \right)$$  is :

A $$\log \left( {1 + \sqrt 2 } \right)$$
B $$\log \left( {1 + \sqrt 2 } \right) - \frac{\pi }{4}$$
C $$\log \left( {1 + \sqrt 2 } \right) + \frac{\pi }{4}$$
D none of these
Answer :   $$\log \left( {1 + \sqrt 2 } \right) - \frac{\pi }{4}$$

36. If $$\int {\frac{{x{e^x}}}{{\sqrt {1 + {e^x}} }}} dx = f\left( x \right)\sqrt {1 + {e^x}} - 2\,\log \,g\left( x \right) + C,$$          then :

A $$f\left( x \right) = x - 1$$
B $$g\left( x \right) = \frac{{\sqrt {1 + {e^x}} - 1}}{{\sqrt {1 + {e^x}} + 1}}$$
C $$g\left( x \right) = \frac{{\sqrt {1 + {e^x}} + 1}}{{\sqrt {1 + {e^x}} - 1}}$$
D $$f\left( x \right) = 2\left( {2 - x} \right)$$
Answer :   $$g\left( x \right) = \frac{{\sqrt {1 + {e^x}} - 1}}{{\sqrt {1 + {e^x}} + 1}}$$

37. $$\int {\frac{{dx}}{{\sin \,x\left( {3 + {{\cos }^2}x} \right)}}} $$     is equal to :

A $$\log \left| {{y^2} - 1} \right| - {\tan ^{ - 1}}y + C$$
B $${\tan ^{ - 1}}\frac{y}{{\sqrt 3 }} + C$$
C $$\log \left| {\frac{{y - 1}}{{y + 1}}} \right| + C$$
D $$\frac{1}{4}\log \left| {\frac{{y - 1}}{{y + 1}}} \right| - \frac{1}{{4\sqrt 3 }}{\tan ^{ - 1}}\frac{y}{{\sqrt 3 }} + C$$
Answer :   $$\frac{1}{4}\log \left| {\frac{{y - 1}}{{y + 1}}} \right| - \frac{1}{{4\sqrt 3 }}{\tan ^{ - 1}}\frac{y}{{\sqrt 3 }} + C$$

38. $$\int {\frac{{1 + \sin \,x}}{{1 + \cos \,x}}.{e^x}dx} $$     is equal to :

A $${e^x}\tan \left( {\frac{x}{2}} \right) + k$$
B $${e^x}\tan \,x + k$$
C $$\frac{1}{2}{e^x}\tan \frac{x}{2} + k$$
D $${e^x}{\sec ^2}\frac{x}{2} + k$$
Answer :   $${e^x}\tan \left( {\frac{x}{2}} \right) + k$$

39. $$\int {\frac{{d\left( {{x^2} + 1} \right)}}{{\sqrt {{x^2} + 2} }}} $$    is equal to :

A $$2\sqrt {{x^2} + 2} + k$$
B $$\sqrt {{x^2} + 2} + k$$
C $$\frac{1}{{{{\left( {{x^2} + 2} \right)}^{\frac{3}{2}}}}} + k$$
D none of these
Answer :   $$2\sqrt {{x^2} + 2} + k$$

40. If $$\phi \left( x \right) = \int {{{\cot }^4}x\,dx + \frac{1}{3}{{\cot }^3}x - \cot \,x} $$         and $$\phi \left( {\frac{\pi }{2}} \right) = \frac{\pi }{2}$$    then $$\phi \left( x \right)$$  is :

A $$\pi - x$$
B $$x - \pi $$
C $$\frac{\pi }{2} - x$$
D none of these
Answer :   none of these