Indefinite Integration MCQ Questions & Answers in Calculus | Maths

Learn Indefinite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

51. The integral $$\int {{{\sec }^{\frac{2}{3}}}x\,{\text{cose}}{{\text{c}}^{\frac{4}{3}}}x\,dx} $$     is equal to:
(Here $$C$$ is a constant of integration)

A $$ - 3\,{\tan ^{ - \,\frac{1}{3}}}x + C$$
B $$ - \frac{3}{4}\,{\tan ^{ - \,\frac{4}{3}}}x + C$$
C $$ - 3\,{\cot ^{ - \,\frac{1}{3}}}x + C$$
D $$3\,{\tan ^{ - \,\frac{1}{3}}}x + C$$
Answer :   $$ - 3\,{\tan ^{ - \,\frac{1}{3}}}x + C$$

52. If $$\int {f\left( x \right)\sin \,x\,\cos \,x\,dx = \frac{1}{{2\left( {{b^2} - {a^2}} \right)}}{{\log }_e}\left( {f\left( x \right)} \right)} + C,\,b \ne \pm a,$$           then $${\left\{ {f\left( x \right)} \right\}^{ - 1}}$$  is equal to :

A $${a^2}{\sin ^2}x + {b^2}{\cos ^2}x + C$$
B $${a^2}{\sin ^2}x - {b^2}{\cos ^2}x + C$$
C $${a^2}{\cos ^2}x + {b^2}{\sin ^2}x + C$$
D $${a^2}{\cos ^2}x - {b^2}{\sin ^2}x + C$$
Answer :   $${a^2}{\sin ^2}x + {b^2}{\cos ^2}x + C$$

53. If $$\int {\sec \,x\,{\text{cosec}}\,x\,dx} = \log \left| {g\left( x \right)} \right| + c,$$       then what is $$g\left( x \right)$$  equal to ?

A $$\sin \,x\,\cos \,x$$
B $${\sec ^2}x$$
C $$\tan \,x$$
D $$\log \left| {\tan \,x} \right|$$
Answer :   $$\tan \,x$$

54. Integral of $$f\left( x \right) = \sqrt {1 + {x^2}} $$    with respect to $${x^2}$$  is :

A $$\frac{2}{3}\frac{{{{\left( {1 + {x^2}} \right)}^{\frac{3}{2}}}}}{x} + k$$
B $$\frac{2}{3}{\left( {1 + {x^2}} \right)^{\frac{3}{2}}} + k$$
C $$\frac{2}{3}x{\left( {1 + {x^2}} \right)^{\frac{3}{2}}} + k$$
D none of these
Answer :   $$\frac{2}{3}{\left( {1 + {x^2}} \right)^{\frac{3}{2}}} + k$$

55. If $$\int {f\left( x \right)\cos \,x\,dx} = \frac{1}{2}{f^2}\left( x \right) + c,$$       then $$f\left( x \right)$$  can be :

A $$x$$
B $$1$$
C $$\cos \,x$$
D $$\sin \,x$$
Answer :   $$\sin \,x$$

56. Let $${I_n} = \int {{{\tan }^n}x\,dx,\,\left( {n > 1} \right).} $$     $${I_4} + {I_6} = a\,{\tan ^5}x + b{x^5} + C,$$       where $$C$$ is constant of integration, then the ordered pair $$\left( {a,\,b} \right)$$  is equal to :

A $$\left( { - \frac{1}{5},\,\,0} \right)$$
B $$\left( { - \frac{1}{5},\,\,1} \right)$$
C $$\left( { \frac{1}{5},\,\,0} \right)$$
D $$\left( {\frac{1}{5},\,\, - 1} \right)$$
Answer :   $$\left( { \frac{1}{5},\,\,0} \right)$$

57. Solve this $$\int {\frac{{{x^2} - 1}}{{{x^3}\sqrt {2{x^4} - 2{x^2} + 1} }}dx} = ?$$

A $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^2}}} + C$$
B $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^3}}} + C$$
C $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{x} + C$$
D $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{2{x^2}}} + C$$
Answer :   $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{2{x^2}}} + C$$

58. $$\int {{{\left( {x + \frac{1}{x}} \right)}^{n + 5}}\left( {\frac{{{x^2} - 1}}{{{x^2}}}} \right)} dx$$       is equal to :

A $$\frac{{{{\left( {x + \frac{1}{x}} \right)}^{n + 6}}}}{{n + 6}} + c$$
B $${\left[ {\frac{{{x^2} + 1}}{{{x^2}}}} \right]^{n + 6}}\left( {n + 6} \right) + c$$
C $${\left[ {\frac{x}{{{x^2} + 1}}} \right]^{n + 6}}\left( {n + 6} \right) + c$$
D none of these
Answer :   $$\frac{{{{\left( {x + \frac{1}{x}} \right)}^{n + 6}}}}{{n + 6}} + c$$

59. $$\int {\frac{{dx}}{{{x^{\frac{1}{5}}}{{\left( {1 + {x^{\frac{4}{5}}}} \right)}^{\frac{1}{2}}}}}} $$    is :

A $$\sqrt {1 + {x^{\frac{4}{5}}}} + k$$
B $$\frac{5}{2}\sqrt {1 + {x^{\frac{4}{5}}}} + k$$
C $${x^{\frac{4}{5}}}{\left( {1 + {x^{\frac{4}{5}}}} \right)^{\frac{1}{2}}} + k$$
D none of these
Answer :   $$\frac{5}{2}\sqrt {1 + {x^{\frac{4}{5}}}} + k$$

60. $$\int {\frac{{{x^2}}}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 4} \right)}}} dx$$     is equal to :

A $${\tan ^{ - 1}}x + 2\,{\tan ^{ - 1}}\left( {\frac{x}{2}} \right) + C$$
B $${\tan ^{ - 1}}\left( {\frac{x}{2}} \right) - 4\,{\tan ^{ - 1}}x + C$$
C $$ - \frac{1}{3}{\tan ^{ - 1}}x + \frac{2}{3}{\tan ^{ - 1}}\left( {\frac{x}{2}} \right) + C$$
D $$4\,{\tan ^{ - 1}}\left( {\frac{x}{2}} \right) - 2\,{\tan ^{ - 1}}x + C$$
Answer :   $$ - \frac{1}{3}{\tan ^{ - 1}}x + \frac{2}{3}{\tan ^{ - 1}}\left( {\frac{x}{2}} \right) + C$$