Indefinite Integration MCQ Questions & Answers in Calculus | Maths

Learn Indefinite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

61. What is $$\int {\frac{{{e^x}\left( {1 + x} \right)}}{{{{\cos }^2}\left( {x{e^x}} \right)}}dx} $$     equal to ?
Where $$c$$ is a constant of integration.

A $$x{e^x} + c$$
B $$\cos \left( {x{e^x}} \right) + c$$
C $$\tan \left( {x{e^x}} \right) + c$$
D $$x\,{\text{cosec}}\left( {x{e^x}} \right) + c$$
Answer :   $$\tan \left( {x{e^x}} \right) + c$$

62. If $${l^r}\left( x \right)$$  means $$\log \,\log \,\log .....x,$$     the $$\log $$ being repeated $$r$$ times. Then $${\int {\left\{ {xl\left( x \right){l^2}\left( x \right){l^3}\left( x \right)......{l^r}\left( x \right)} \right\}} ^{ - 1}}dx$$        is equal to :

A $${l^{r + 1}}\left( x \right) + C$$
B $$\frac{{{l^{r + 1}}\left( x \right)}}{{r + 1}} + C$$
C $${l^r}\left( x \right) + C$$
D None
Answer :   $${l^{r + 1}}\left( x \right) + C$$

63. If $$I = \int {{{\sin }^{ - \frac{{11}}{3}}}x\,{{\cos }^{ - \frac{1}{3}}}x\,dx} = A\,{\cot ^{\frac{2}{3}}}x + B\,{\cot ^{\frac{8}{3}}}x + C.$$           Then :

A $$A = \frac{2}{3},\,B = \frac{8}{3}$$
B $$A = - \frac{3}{2},\,B = - \frac{3}{8}$$
C $$A = \frac{3}{2},\,B = \frac{3}{8}$$
D None of these
Answer :   $$A = - \frac{3}{2},\,B = - \frac{3}{8}$$

64. The value of the integral $$\int {\frac{{{{\cos }^3}x + {{\cos }^5}x}}{{{{\sin }^2}x + {{\sin }^4}x}}dx} $$    is-

A $$\sin \,x - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
B $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + c$$
C $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
D $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + 5\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
Answer :   $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$

65. $$\int {\frac{{\left\{ {f\left( x \right).\phi '\left( x \right) - f'\left( x \right).\phi \left( x \right)} \right\}}}{{f\left( x \right).\phi \left( x \right)}}} \left\{ {\log \phi \left( x \right) - \log f\left( x \right)} \right\}dx$$            is equal to :

A $$\log \frac{{\phi \left( x \right)}}{{f\left( x \right)}} + k$$
B $$\frac{1}{2}{\left\{ {\log \frac{{\phi \left( x \right)}}{{f\left( x \right)}}} \right\}^2} + k$$
C $$\frac{{\phi \left( x \right)}}{{f\left( x \right)}}\log \frac{{\phi \left( x \right)}}{{f\left( x \right)}} + k$$
D none of these
Answer :   $$\frac{1}{2}{\left\{ {\log \frac{{\phi \left( x \right)}}{{f\left( x \right)}}} \right\}^2} + k$$

66. If $$\int {\frac{{dx}}{{f\left( x \right)}}} = \log {\left\{ {f\left( x \right)} \right\}^2} + c,$$      then what is $$f\left( x \right)$$  equal to ?

A $$2x + \alpha $$
B $$x + \alpha $$
C $$\frac{x}{2} + \alpha $$
D $${x^2} + \alpha $$
Answer :   $$\frac{x}{2} + \alpha $$

67. Let $$I = \int {\frac{{{e^x}}}{{{e^{4x}} + {e^{2x}} + 1}}dx,\,J = \int {\frac{{{e^{ - \,x}}}}{{{e^{ - \,4x}} + {e^{ - \,2x}} + 1}}dx.} } $$
Then for an arbitrary constant $$C,$$ the value of $$J-I$$  equals-

A $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} - {e^{2x}} + 1}}{{{e^{4x}} + {e^{2x}} + 1}}} \right) + C$$
B $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} + {e^x} + 1}}{{{e^{2x}} - {e^x} + 1}}} \right) + C$$
C $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} - {e^x} + 1}}{{{e^{2x}} + {e^x} + 1}}} \right) + C$$
D $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} + {e^{2x}} + 1}}{{{e^{4x}} - {e^{2x}} + 1}}} \right) + C$$
Answer :   $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} - {e^x} + 1}}{{{e^{2x}} + {e^x} + 1}}} \right) + C$$

68. $$\int {\frac{{dx}}{{\cos \,x + \sqrt 3 \,\sin \,x}}} $$    equals-

A $$\log \,\tan \,\left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) + C$$
B $$\log \,\tan \,\left( {\frac{x}{2} - \frac{\pi }{{12}}} \right) + C$$
C $$\frac{1}{2}\log \,\tan \,\left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) + C$$
D $$\frac{1}{2}\log \,\tan \,\left( {\frac{x}{2} - \frac{\pi }{{12}}} \right) + C$$
Answer :   $$\frac{1}{2}\log \,\tan \,\left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) + C$$

69. $$\int {\frac{{\sqrt x }}{{1 + \root 4 \of {{x^3}} }}dx} $$    is equal to :

A $$\frac{4}{3}\left[ {1 + {x^{\frac{3}{4}}} + \log \left( {1 + {x^{\frac{3}{4}}}} \right)} \right] + C$$
B $$\frac{4}{3}\left[ {1 + {x^{\frac{3}{4}}} - \log \left( {1 + {x^{\frac{3}{4}}}} \right)} \right] + C$$
C $$\frac{4}{3}\left[ {1 - {x^{\frac{3}{4}}} + \log \left( {1 + {x^{\frac{3}{4}}}} \right)} \right] + C$$
D None of these
Answer :   $$\frac{4}{3}\left[ {1 + {x^{\frac{3}{4}}} - \log \left( {1 + {x^{\frac{3}{4}}}} \right)} \right] + C$$

70. If $$\int {{{\log }_e}\left( {\sqrt {1 - x} + \sqrt {1 + x} } \right)} dx = x\,{\log _e}\left( {\sqrt {1 - x} + \sqrt {1 + x} } \right) + g\left( x \right) + C.$$
Then $$g\left( x \right) = ?$$

A $$x - {\sin ^{ - 1}}x$$
B $${\sin ^{ - 1}}x - x$$
C $$x + {\sin ^{ - 1}}x$$
D $${\sin ^{ - 1}}x - {x^2}$$
Answer :   $${\sin ^{ - 1}}x - x$$