Indefinite Integration MCQ Questions & Answers in Calculus | Maths
Learn Indefinite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
61.
What is $$\int {\frac{{{e^x}\left( {1 + x} \right)}}{{{{\cos }^2}\left( {x{e^x}} \right)}}dx} $$ equal to ?
Where $$c$$ is a constant of integration.
A
$$x{e^x} + c$$
B
$$\cos \left( {x{e^x}} \right) + c$$
C
$$\tan \left( {x{e^x}} \right) + c$$
D
$$x\,{\text{cosec}}\left( {x{e^x}} \right) + c$$
Answer :
$$\tan \left( {x{e^x}} \right) + c$$
$$\eqalign{
& {\text{Let }}I = \int {\frac{{{e^x}\left( {1 + x} \right)}}{{{{\cos }^2}\left( {x{e^x}} \right)}}dx} \cr
& {\text{Put, }}x{e^x} = t \Rightarrow {e^x}\left( {1 + x} \right)dx = dt \cr
& \therefore \,I = \int {\frac{{dt}}{{{{\cos }^2}t}}} = \int {{{\sec }^2}tdt = } \tan \,t + c = \tan \left( {x{e^x}} \right) + c \cr} $$
where $$'c'$$ is a constant of integration.
62.
If $${l^r}\left( x \right)$$ means $$\log \,\log \,\log .....x,$$ the $$\log $$ being repeated $$r$$ times. Then $${\int {\left\{ {xl\left( x \right){l^2}\left( x \right){l^3}\left( x \right)......{l^r}\left( x \right)} \right\}} ^{ - 1}}dx$$ is equal to :
A
$${l^{r + 1}}\left( x \right) + C$$
B
$$\frac{{{l^{r + 1}}\left( x \right)}}{{r + 1}} + C$$
C
$${l^r}\left( x \right) + C$$
D
None
Answer :
$${l^{r + 1}}\left( x \right) + C$$
Putting $${l^{r + 1}}\left( x \right) = t$$ and $$\frac{1}{{xl\left( x \right){l^2}\left( x \right).....{l^r}\left( x \right)}}dx = dt$$
$$\eqalign{
& {\text{we get, }}\int {\frac{1}{{x{l^2}\left( x \right){l^3}\left( x \right).....{l^r}\left( x \right)}}} \cr
& = \int {1.dt} \cr
& = t + C \cr
& = {l^{r + 1}}\left( x \right) + C \cr} $$
65.
$$\int {\frac{{\left\{ {f\left( x \right).\phi '\left( x \right) - f'\left( x \right).\phi \left( x \right)} \right\}}}{{f\left( x \right).\phi \left( x \right)}}} \left\{ {\log \phi \left( x \right) - \log f\left( x \right)} \right\}dx$$ is equal to :
A
$$\log \frac{{\phi \left( x \right)}}{{f\left( x \right)}} + k$$
B
$$\frac{1}{2}{\left\{ {\log \frac{{\phi \left( x \right)}}{{f\left( x \right)}}} \right\}^2} + k$$
C
$$\frac{{\phi \left( x \right)}}{{f\left( x \right)}}\log \frac{{\phi \left( x \right)}}{{f\left( x \right)}} + k$$
D
none of these
Answer :
$$\frac{1}{2}{\left\{ {\log \frac{{\phi \left( x \right)}}{{f\left( x \right)}}} \right\}^2} + k$$
$$I = \int {\log \frac{{\phi \left( x \right)}}{{f\left( x \right)}}d\left\{ {\log \frac{{\phi \left( x \right)}}{{f\left( x \right)}}} \right\}} = \frac{1}{2}{\left\{ {\log \frac{{\phi \left( x \right)}}{{f\left( x \right)}}} \right\}^2} + k$$
66.
If $$\int {\frac{{dx}}{{f\left( x \right)}}} = \log {\left\{ {f\left( x \right)} \right\}^2} + c,$$ then what is $$f\left( x \right)$$ equal to ?
A
$$2x + \alpha $$
B
$$x + \alpha $$
C
$$\frac{x}{2} + \alpha $$
D
$${x^2} + \alpha $$
Answer :
$$\frac{x}{2} + \alpha $$
We check from the given options one by one. Options (A) and (B) do not satisfy. We check option (C).
$$\eqalign{
& {\text{Let }}f\left( x \right) = \frac{x}{2} + \alpha \cr
& \therefore \,\int {\frac{{dx}}{{\frac{x}{2} + \alpha }}} \cr
& = \int {\frac{{2dx}}{{\left( {x + 2\alpha } \right)}}} \cr
& = 2\,\log \left( {x + 2\alpha } \right) + {c_1} \cr
& = \log {\left( {x + 2\alpha } \right)^2} + {c_1} \cr
& = \log {\left( {\frac{x}{2} + \alpha } \right)^2} + \log \,{2^2} + {c_1} \cr
& = \log {\left( {\frac{x}{2} + \alpha } \right)^2} + c \cr} $$
67.
Let $$I = \int {\frac{{{e^x}}}{{{e^{4x}} + {e^{2x}} + 1}}dx,\,J = \int {\frac{{{e^{ - \,x}}}}{{{e^{ - \,4x}} + {e^{ - \,2x}} + 1}}dx.} } $$
Then for an arbitrary constant $$C,$$ the value of $$J-I$$ equals-