Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

91. If $$f\left( x \right) = {\left( {\frac{{{{\sin }^m}x}}{{{{\sin }^n}x}}} \right)^{m + n}}.{\left( {\frac{{{{\sin }^n}x}}{{{{\sin }^p}x}}} \right)^{n + p}}.{\left( {\frac{{{{\sin }^p}x}}{{{{\sin }^m}x}}} \right)^{p + m}},$$          then $$f'\left( x \right)$$  is equal to :

A $$0$$
B $$1$$
C $${\cos ^{m + n + p}}x$$
D none of these
Answer :   $$0$$

92. Let $$f\left( x \right) = x{\left( { - 1} \right)^{\left[ {\frac{1}{x}} \right]}},\,x \ne 0,$$      where $$\left[ x \right]$$ denotes the greatest integer less than or equal to $$x$$ then, $$\mathop {\lim }\limits_{x \to 0} f\left( x \right) = ?$$

A does not exist
B $$2$$
C $$0$$
D $$ - 1$$
Answer :   $$0$$

93. \[\begin{array}{l} {\rm{Let\, }}f\left( x \right) = \left\{ \begin{array}{l} \sin \,x,\,x \ne n\pi \\ 2,\,x = n\pi ,\,n \in Z, \end{array} \right.\\ {\rm{and\, }}g\left( x \right) = \left\{ \begin{array}{l} {x^2} + 1,\,x \ne 2\\ 3,\,x = 2\,\, \end{array} \right. \end{array}\]
Then $$\mathop {\lim }\limits_{x \to 0} g\left( {f\left( x \right)} \right)$$   is :

A 0
B 1
C 3
D none of these
Answer :   1

94. $$\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 - \cos \,2x} }}{{\sqrt 2 x}}$$     is-

A $$1$$
B $$-1$$
C zero
D does not exist
Answer :   does not exist

95. The value of $$\mathop {\lim }\limits_{n \to \infty } \left[ {\root 3 \of {{{\left( {n + 1} \right)}^2}} - \root 3 \of {{{\left( {n - 1} \right)}^2}} } \right]$$       is :

A $$1$$
B $$ - 1$$
C $$0$$
D $$ - \infty $$
Answer :   $$0$$

96. If $$f\left( x \right)$$  is continuous in [0, 1] and $$f\left( {\frac{1}{3}} \right) = 1,$$   then $$\mathop {\lim }\limits_{n \to \infty } f\left( {\frac{n}{{\sqrt {9{n^2} + 1} }}} \right)$$     is equal to :

A 1
B 0
C $$\frac{1}{3}$$
D none of these
Answer :   1

97. $$\mathop {\lim }\limits_{n \to \infty } \left[ {\frac{1}{{{n^2}}}{{\sec }^2}\frac{1}{{{n^2}}} + \frac{2}{{{n^2}}}{{\sec }^2}\frac{4}{{{n^2}}} + ..... + \frac{1}{n}{{\sec }^2}1} \right]$$           equals-

A $$\frac{1}{2}\sec \,1$$
B $$\frac{1}{2}{\text{cosec}}\,1$$
C $$\tan 1$$
D $$\frac{1}{2}\tan 1$$
Answer :   $$\frac{1}{2}\tan 1$$

98. $$\mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\sin \left( {\operatorname{sgn} \left( x \right)} \right)}}{{\left( {\operatorname{sgn} \left( x \right)} \right)}}} \right],$$     where $$\left[ . \right]$$ denotes the greatest integer function, is equal to :

A $$0$$
B $$1$$
C $$- 1$$
D does not exist
Answer :   $$0$$

99. $$\mathop {\lim }\limits_{x \to \infty } \frac{{{{\log }_e}\left[ x \right]}}{x},$$    where $$\left[ \cdot \right]$$ denotes the greatest integer function, is :

A 0
B 1
C $$-1$$
D nonexistent
Answer :   0

100. $$\mathop {\lim }\limits_{x \to 0} {\left( {\frac{{1 + 5{x^2}}}{{1 + 3{x^2}}}} \right)^{{{\frac{1}{x^2}}}}}$$   is equal to :

A $$e$$
B $${e^{\frac{1}{2}}}$$
C $${e^{ - 2}}$$
D none of these
Answer :   none of these