Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

101. $$\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^{100}}}}{{{e^x}}} + {{\left( {\cos \frac{2}{x}} \right)}^{{x^2}}}} \right) = ?$$

A $${e^{ - 1}}$$
B $${e^{ - 4}}$$
C $$\left( {1 + {e^{ - 2}}} \right)$$
D $${e^{ - 2}}$$
Answer :   $${e^{ - 2}}$$

102. If $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{a}{x} + \frac{b}{{{x^2}}}} \right)^{2x}} = {e^2},$$       then the value of $$a$$ and $$b,$$ are-

A $$a=1$$   and $$b=2$$
B $$a = 1,\,\,b \in {\bf{R}}$$
C $$a \in {\bf{R}},\,\,b = 2$$
D $$a \in {\bf{R}},\,\,b \in {\bf{R}}$$
Answer :   $$a = 1,\,\,b \in {\bf{R}}$$

103. $$\mathop {\lim }\limits_{x \to \infty } \left( {\sqrt {x + \sqrt x } - \sqrt x } \right)$$     is equal to :

A 1
B 0
C $$\frac{1}{2}$$
D none of these
Answer :   $$\frac{1}{2}$$

104. $$\mathop {\lim }\limits_{x \to \infty } {\left( {\frac{{x - 1}}{{x + 1}}} \right)^{x + 2}}$$     is equal to :

A $$e$$
B $${e^{ - 1}}$$
C $${e^{ - 2}}$$
D none of these
Answer :   $${e^{ - 2}}$$

105. If $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{a}{x} + \frac{b}{{{x^2}}}} \right)^{2x}} = {e^2},$$      then the values of $$a$$ and $$b,$$ are :

A $$a = 1{\text{ and }}b = 2$$
B $$a = 1{\text{ and}}\,b\, \in \,R$$
C $$a\, \in \,R{\text{ and }}\,b = 2$$
D $$a\, \in \,R{\text{ and}}\,b\, \in \,R$$
Answer :   $$a = 1{\text{ and}}\,b\, \in \,R$$

106. If $$f\left( x \right) = \sqrt {{x^2} - 10x + 25} ,$$     then the derivative of $$f\left( x \right)$$  on the interval $$\left[ {0,\,7} \right]$$  is :

A $$1$$
B $$ - 1$$
C $$0$$
D none of these
Answer :   none of these

107. If $$f\left( 4 \right) = 4,\,f'\left( 4 \right) = 1,$$     then $$\mathop {\lim }\limits_{x \to 4} \frac{{2 - \sqrt {f\left( x \right)} }}{{2 - \sqrt x }}$$    is equal to :

A 0
B 1
C $$-1$$
D none of these
Answer :   1

108. The value of $$\mathop {\lim }\limits_{x \to \infty } \frac{{{{\left( {{2^{{x^n}}}} \right)}^{\frac{1}{{{e^x}}}}} - {{\left( {{3^{{x^n}}}} \right)}^{\frac{1}{{{e^x}}}}}}}{{{x^n}}}$$     (where $$n\, \in \,N$$  ) is :

A $$\log \,n\left( {\frac{2}{3}} \right)$$
B $$0$$
C $$n\,\log \,n\left( {\frac{2}{3}} \right)$$
D not defined
Answer :   $$0$$

109. If $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{\lambda }{x} + \frac{\mu }{{{x^2}}}} \right)^{2x}} = {e^2}$$      then :

A $$\lambda = 1,\,\,\mu = 2$$
B $$\lambda = 2,\,\,\mu = 1$$
C $$\lambda = 1,\,\,\mu =$$   any real constant
D $$\lambda = \mu = 1$$
Answer :   $$\lambda = 1,\,\,\mu =$$   any real constant

110. $$\mathop {\lim }\limits_{h \to 0} \left\{ {\frac{1}{{h.\root 3 \of {8 + h} }} - \frac{1}{{2h}}} \right\}$$     is equal to :

A $$\frac{1}{{12}}$$
B $$ - \frac{4}{3}$$
C $$ - \frac{{16}}{3}$$
D $$ - \frac{1}{{48}}$$
Answer :   $$ - \frac{1}{{48}}$$