Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

111. lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A $$0$$
B $$\infty $$
C $$1$$
D none of these
Answer :   $$1$$

112. $$\mathop {\lim }\limits_{x \to 0} {\left\{ {\tan \left( {\frac{\pi }{4} - x} \right)} \right\}^{\frac{1}{x}}}$$     is equal to :

A 1
B $$e$$
C $${e^2}$$
D $${e^{ - 2}}$$
Answer :   $${e^{ - 2}}$$

113. A triangle has two of its vertices at $$P\left( {a,\,0} \right),\,Q\left( {0,\,b} \right)$$    and the third vertex $$R\left( {x,\,y} \right)$$   is moving along the straight line $$y = x.$$  If $$A$$ be the area of the triangle, then $$\frac{{dA}}{{dx}}$$  is equal to :

A $$\frac{{a - b}}{2}$$
B $$\frac{{a - b}}{4}$$
C $$ - \left( {\frac{{a + b}}{2}} \right)$$
D $$\frac{{a + b}}{4}$$
Answer :   $$ - \left( {\frac{{a + b}}{2}} \right)$$

114. If $$\alpha $$ is a repeated root of $$a{x^2} + bx + c = 0$$    then $$\mathop {\lim }\limits_{x \to \alpha } \frac{{\sin \left( {a{x^2} + bx + c} \right)}}{{{{\left( {x - \alpha } \right)}^2}}}$$     is :

A $$0$$
B $$a$$
C $$b$$
D $$c$$
Answer :   $$a$$

115. $$\mathop {\lim }\limits_{n \to \infty } \frac{{{n^p}{{\sin }^2}\left( {n!} \right)}}{{n + 1}},\,0 < p < 1$$      is equal to :

A $$0$$
B $$\infty $$
C $$1$$
D none of these
Answer :   $$0$$

116. $$\mathop {\lim }\limits_{x \to 0} \frac{{{{\sin }^{ - 1}}x - {{\tan }^{ - 1}}x}}{{{x^2}}}$$     is equal to :

A $$\frac{1}{2}$$
B $$ - \frac{1}{2}$$
C 0
D $$\infty $$
Answer :   0

117. $$\mathop {\lim }\limits_{x \to 0} \frac{{\sin \,{x^4} - {x^4}\cos \,{x^4} + {x^{20}}}}{{{x^4}\left( {{e^{2{x^4}}}1 - 2{x^4}} \right)}}$$       is equal to :

A $$0$$
B $$ - \frac{1}{6}$$
C $$\frac{1}{6}$$
D does not exist
Answer :   $$\frac{1}{6}$$

118. $$\mathop {\lim }\limits_{x \to 2} \left( {\frac{{\sqrt {1 - \cos \left\{ {2\left( {x - 2} \right)} \right\}} }}{{x - 2}}} \right) = ?$$

A equals $$\sqrt 2 $$
B equals $$ - \sqrt 2 $$
C equals $$\frac{1}{{\sqrt 2 }}$$
D does not exist
Answer :   does not exist

119. Let $$f\left( x \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{\log \left( {2 + x} \right) - {x^{2n}}\sin \,x}}{{1 + {x^{2n}}}}.$$       Then :

A $$\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)$$
B $$\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \sin \,1$$
C $$\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)$$    doesn't exist
D none of these
Answer :   $$\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)$$

120. The value of $$\mathop {\lim }\limits_{x \to 0} {\log _e}{\left( {\sin \,x} \right)^{\tan \,x}}$$    is :

A $$1$$
B $$ - 1$$
C $$0$$
D none of these
Answer :   $$0$$