View Solution
$$\eqalign{
& {\text{For }}\left| x \right| < 1,\,{x^{2n}} \to 0{\text{ as }}n \to \infty {\text{ and}} \cr
& {\text{For }}\left| x \right| > 1,\,\frac{1}{{{x^{2n}}}} \to 0{\text{ as }}n \to \infty \cr
& {\text{So,}} \cr} $$
\[f\left( x \right) = \left\{ \begin{array}{l}
\log \left( {2 + x} \right){\rm{ }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{if }}\left| x \right| < 1\\
\mathop {\lim }\limits_{n \to \infty } \frac{{{x^{ - 2n}}\log \left( {2 + x} \right) - \sin \,x}}{{{x^{ - 2n}} + 1}} = - \sin \,x\,\,\,\,\,\,{\rm{if }}\left| x \right| > 1\\
\frac{1}{2}\left[ {\log \left( {2 + x} \right) - \sin \,x} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{if }}\left| x \right| = 1
\end{array} \right.\]
$$\eqalign{
& {\text{Thus }}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x{ \to ^{1 + }}} \left( { - \sin \,x} \right) = - \sin \,1 \cr
& {\text{and }}\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x{ \to ^{1 - }}} \,\log \left( {2 + x} \right) = \log \,3 \cr
& {\text{Hence, L}}{\text{.H}}{\text{.L. }} \ne {\text{ R}}{\text{.H}}{\text{.L}}{\text{.}} \cr} $$