Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

121. $$\mathop {\lim }\limits_{x \to 0} \left[ {\min \left( {{y^2} - 4y + 11} \right)\frac{{\sin \,x}}{7}} \right]$$       (where $$\left[ . \right]$$ denotes the greatest integer function) is :

A 5
B 6
C 7
D does not exist
Answer :   6

122. If $$\left[ \cdot \right]$$ denotes the greatest integer function then $$\mathop {\lim }\limits_{n \to \infty } \frac{{\left[ x \right] + \left[ {2x} \right] + ..... + \left[ {nx} \right]}}{{{n^2}}}$$      is :

A 0
B $$x$$
C $$\frac{x}{2}$$
D $$\frac{{{x^2}}}{2}$$
Answer :   $$\frac{x}{2}$$

123. $$\mathop {\lim }\limits_{x \to 0} \frac{{x\sqrt {{y^2} - {{\left( {y - x} \right)}^2}} }}{{{{\left( {\sqrt {8xy - 4{x^2}} + \sqrt {8xy} } \right)}^3}}}$$      is equal to :

A $$\frac{1}{4}$$
B $$\frac{1}{2}$$
C $$\frac{1}{{2\sqrt 2 }}$$
D none of these
Answer :   $$\frac{1}{4}$$

124. If $$m,\,n\, \in \,{I_0}$$   and $$\mathop {\lim }\limits_{x \to 0} \frac{{\tan \,2x - n\,\sin \,x}}{{{x^3}}} = $$      some integer, then value of this limit is :

A $$3$$
B $$2$$
C $$\frac{{16 + n}}{{12}}$$
D none of these
Answer :   $$3$$

125. If $$\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} + x + 1}}{{x + 1}} - ax - b} \right) = 4,$$       then-

A $$a=1,\,\,b=4$$
B $$a=1,\,\,b=-4$$
C $$a=2,\,\,b=-3$$
D $$a=2,\,\,b=3$$
Answer :   $$a=1,\,\,b=-4$$

126. The limit $$\mathop {\lim }\limits_{n \to \infty } \mathop \prod \limits_{r = 3}^n \frac{{{r^3} - 8}}{{{r^3} + 8}}$$    is equal to :

A $$\frac{2}{7}$$
B $$\frac{1}{{12}}$$
C $$\frac{{19}}{{52}}$$
D none of these
Answer :   $$\frac{2}{7}$$

127. Let $$\left\{ x \right\}$$ denotes the fractional part of $$x.$$ Then $$\mathop {\lim }\limits_{x \to 0} \frac{{\left\{ x \right\}}}{{\tan \,\left\{ x \right\}}}$$   is equal to

A 1
B 0
C $$-1$$
D none of these
Answer :   1

128. If $$f\left( x \right) = \frac{{\sin \left( {{e^{x - 2}} - 1} \right)}}{{\ln \left( {x - 1} \right)}},$$     then $$\mathop {\lim }\limits_{x \to 2} f\left( x \right)$$   is equal to :

A $$ - 2$$
B $$ - 1$$
C $$0$$
D $$1$$
Answer :   $$1$$

129. $$\mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos \,x}}{{x\left( {{2^x} - 1} \right)}}$$   is equal to :

A $$\frac{1}{2}\,{\log _2}e$$
B $$\frac{1}{2}\,{\log _e}2$$
C 1
D none of these
Answer :   $$\frac{1}{2}\,{\log _2}e$$

130. $$\mathop {\lim }\limits_{x \to {{\frac{\pi }{2}}^ - }} {\left[ {1 + {{\left( {\cos \,x} \right)}^{\cos \,x}}} \right]^2}$$     is equal to :

A does not exist
B $$1$$
C $$e$$
D $$4$$
Answer :   $$4$$