Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

131. If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A $$\frac{1}{{24}}$$
B $$\frac{1}{{5}}$$
C $$ - \sqrt {24} $$
D none of these
Answer :   none of these

132. If $$a = \min \left\{ {{x^2} + 4x + 5,\,x\, \in \,R} \right\}$$      and $$b = \mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \,2\theta }}{{{\theta ^2}}},$$    then the value of $$\sum\limits_{r = 0}^n {{a^r} \cdot {b^{n - r}}} $$   is :

A $$\frac{{{2^{n + 1}} - 1}}{{4 \cdot {2^n}}}$$
B $${{2^{n + 1}} - 1}$$
C $$\frac{{{2^{n + 1}} - 1}}{{3 \cdot {2^n}}}$$
D none of these
Answer :   $${{2^{n + 1}} - 1}$$

133. Let $$f\left( x \right) = \alpha \left( x \right)\beta \left( x \right)\gamma \left( x \right)$$     for all real $$x,$$ where $$\alpha \left( x \right),\,\beta \left( x \right)$$   and $$\gamma \left( x \right)$$  are differentiable functions of $$x.$$ If $$f'\left( 2 \right) = 18f\left( 2 \right),\,\alpha '\left( 2 \right) = 3\alpha \left( 2 \right),\,\beta '\left( 2 \right) = - 4\beta \left( 2 \right)$$          and $$\gamma '\left( 2 \right) = k\gamma \left( 2 \right),$$    then the value of $$k$$ is :

A $$14$$
B $$16$$
C $$19$$
D none of these
Answer :   $$19$$

134. $$\mathop {\lim }\limits_{n \to \infty } \frac{{1 + {2^4} + {3^4} + .....{n^4}}}{{{n^5}}} - \mathop {\lim }\limits_{n \to \infty } \frac{{1 + {2^3} + {3^3} + .....{n^3}}}{{{n^5}}}$$           equal:

A $$\frac{1}{5}$$
B $$\frac{1}{30}$$
C Zero
D $$\frac{1}{4}$$
Answer :   $$\frac{1}{5}$$

135. If $$\left[ . \right]$$ denotes the greatest integer function, then $$\mathop {\lim }\limits_{n \to \infty } \frac{{\left[ x \right] + \left[ {2x} \right] + ..... + \left[ {nx} \right]}}{{{n^2}}}$$      is :

A $$0$$
B $$x$$
C $$\frac{x}{2}$$
D $$\frac{{{x^2}}}{2}$$
Answer :   $$\frac{x}{2}$$

136. If $$\mathop {\lim }\limits_{x \to 0} {\left( {1 + a\,\sin \,x} \right)^{{\text{cosec}}\,x}} = 3,$$      then $$a$$ is :

A $${\text{ln 2}}$$
B $${\text{ln 3}}$$
C $${\text{ln 4}}$$
D $${e^3}$$
Answer :   $${\text{ln 3}}$$

137. If $$\mathop {\lim }\limits_{x \to 0} \,kx\,{\text{cosec}}\,x = \mathop {\lim }\limits_{x \to 0} \,x\,{\text{cosec}}\,kx,$$       then $$k =\,?$$

A $$1$$
B $$ - 1$$
C $$ \pm 1$$
D $$ \pm 2$$
Answer :   $$ \pm 1$$

138. Evaluate $$\mathop {\lim }\limits_{x \to \infty } \,{2^{x - 1}}\tan \left( {\frac{a}{{{2^x}}}} \right)$$

A $$a$$
B $$2a$$
C $$\frac{a}{2}$$
D $$4a$$
Answer :   $$\frac{a}{2}$$

139. $$\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {x - 2} + \sqrt x - \sqrt 2 }}{{\sqrt {{x^2} - 4} }}$$     is equal to :

A $$\frac{1}{2}$$
B 1
C 2
D none of these
Answer :   $$\frac{1}{2}$$

140. Let the $${r^{th}}$$ term, $${t_r},$$ of a series is given by $${t_r} = \frac{r}{{1 + {r^2} + {r^4}}}.$$     Then $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{t_r}} $$   is :

A $$\frac{1}{4}$$
B 1
C $$\frac{1}{2}$$
D none of these
Answer :   $$\frac{1}{2}$$