131.
If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$ then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$ has the value-
A
$$\frac{1}{{24}}$$
B
$$\frac{1}{{5}}$$
C
$$ - \sqrt {24} $$
D
none of these
Answer :
none of these
View Solution
$$\eqalign{
& \mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{ - \sqrt {25 - {x^2}} - \left( { - \sqrt {24} } \right)}}{{x - 1}} \cr
& = \mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{\sqrt {24} - \sqrt {25 - {x^2}} }}{{x - 1}} \times \frac{{\sqrt {24} + \sqrt {25 - {x^2}} }}{{\sqrt {24} + \sqrt {25 - {x^2}} }} \cr
& = \mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{{x^2} - 1}}{{\left( {x - 1} \right)\left[ {\sqrt {24} + \sqrt {25 - {x^2}} } \right]}} \cr
& = \mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{x + 1}}{{\left[ {\sqrt {24} + \sqrt {25 - {x^2}} } \right]}}\,\,\, = \frac{2}{{2\sqrt {24} }}\,\, = \frac{1}{{2\sqrt 6 }} \cr} $$
132.
If $$a = \min \left\{ {{x^2} + 4x + 5,\,x\, \in \,R} \right\}$$ and $$b = \mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \,2\theta }}{{{\theta ^2}}},$$ then the value of $$\sum\limits_{r = 0}^n {{a^r} \cdot {b^{n - r}}} $$ is :
A
$$\frac{{{2^{n + 1}} - 1}}{{4 \cdot {2^n}}}$$
B
$${{2^{n + 1}} - 1}$$
C
$$\frac{{{2^{n + 1}} - 1}}{{3 \cdot {2^n}}}$$
D
none of these
Answer :
$${{2^{n + 1}} - 1}$$
View Solution
$$\eqalign{
& {x^2} + 4x + 5 = {\left( {x + 2} \right)^2} + 1 \geqslant 1 \cr
& {\text{So, }}a = 1 \cr
& b = \mathop {\lim }\limits_{\theta \to 0} \frac{{2\,{{\sin }^2}\theta }}{{{\theta ^2}}} = 2 \cr
& \sum\limits_{r = 0}^n {{a^r} \cdot {b^{n - r}}} = {b^n} + a{b^{n - 1}} + {a^2}{b^{n - 2}} + ..... + {a^n} \cr
& = \frac{{{b^n}\left[ {1 - {{\left( {\frac{a}{b}} \right)}^{n + 1}}} \right]}}{{1 - \frac{a}{b}}} \cr
& = \frac{{{2^n}\left[ {1 - {{\left( {\frac{1}{2}} \right)}^{n + 1}}} \right]}}{{1 - \frac{1}{2}}} \cr
& = \frac{{{2^{n + 1}}\left( {{2^{n + 1}} - 1} \right)}}{{{2^{n + 1}}}} \cr
& = \left( {{2^{n + 1}} - 1} \right) \cr} $$
133.
Let $$f\left( x \right) = \alpha \left( x \right)\beta \left( x \right)\gamma \left( x \right)$$ for all real $$x,$$ where $$\alpha \left( x \right),\,\beta \left( x \right)$$ and $$\gamma \left( x \right)$$ are differentiable functions of $$x.$$ If $$f'\left( 2 \right) = 18f\left( 2 \right),\,\alpha '\left( 2 \right) = 3\alpha \left( 2 \right),\,\beta '\left( 2 \right) = - 4\beta \left( 2 \right)$$ and $$\gamma '\left( 2 \right) = k\gamma \left( 2 \right),$$ then the value of $$k$$ is :
A
$$14$$
B
$$16$$
C
$$19$$
D
none of these
Answer :
$$19$$
View Solution
$$\eqalign{
& {\text{We have, }}f\left( x \right) = \alpha \left( x \right)\beta \left( x \right)\gamma \left( x \right){\text{, for all real }}x \cr
& \Rightarrow f'\left( x \right) = \alpha '\left( x \right)\beta \left( x \right)\gamma \left( x \right) + \alpha \left( x \right)\beta '\left( x \right)\gamma \left( x \right) + \alpha \left( x \right)\beta \left( x \right)\gamma '\left( x \right) \cr
& \Rightarrow f'\left( 2 \right) = \alpha '\left( 2 \right)\beta \left( 2 \right)\gamma \left( 2 \right){\text{ + }}\alpha \left( 2 \right)\beta '\left( 2 \right)\gamma \left( 2 \right){\text{ + }}\alpha \left( 2 \right)\beta \left( 2 \right)\gamma '\left( 2 \right) \cr
& \Rightarrow 18f\left( 2 \right) = 3\alpha \left( 2 \right)\beta \left( 2 \right)\gamma \left( 2 \right) - 4\alpha \left( 2 \right)\beta \left( 2 \right)\gamma \left( 2 \right) + k\alpha \left( 2 \right)\beta \left( 2 \right)\gamma \left( 2 \right) \cr
& \left[ {\because \,f'\left( 2 \right) = 18f\left( 2 \right),\,\alpha '\left( 2 \right) = 3\alpha \left( 2 \right),\,\beta '\left( 2 \right) = - 4\beta \left( 2 \right){\text{ and }}\gamma '\left( 2 \right) = k\gamma \left( 2 \right)} \right] \cr
& \Rightarrow 18f\left( 2 \right) = \left( { - 1 + k} \right)\alpha \left( 2 \right)\beta \left( 2 \right)\gamma \left( 2 \right) \cr
& \Rightarrow 18f\left( 2 \right) = \left( {k - 1} \right)f\left( 2 \right)\,\,\,\,\,\left[ {\because \,f\left( 2 \right) = \alpha \left( 2 \right)\beta \left( 2 \right)\gamma \left( 2 \right)} \right] \cr
& \Rightarrow k - 1 = 18 \cr
& \Rightarrow k = 19 \cr} $$
134.
$$\mathop {\lim }\limits_{n \to \infty } \frac{{1 + {2^4} + {3^4} + .....{n^4}}}{{{n^5}}} - \mathop {\lim }\limits_{n \to \infty } \frac{{1 + {2^3} + {3^3} + .....{n^3}}}{{{n^5}}}$$ equal:
A
$$\frac{1}{5}$$
B
$$\frac{1}{30}$$
C
Zero
D
$$\frac{1}{4}$$
Answer :
$$\frac{1}{5}$$
View Solution
The given expression can be written as
$$\eqalign{
& = \mathop {\lim }\limits_{n \to \infty } \,\frac{1}{n}\,\sum\limits_{r\, = \,1}^n {{{\left( {\frac{r}{n}} \right)}^4} - } \mathop {\lim }\limits_{n \to \infty } \,\frac{1}{n}.\mathop {\lim }\limits_{n \to \infty } \frac{1}{n}{\left( {\frac{r}{n}} \right)^3} \cr
& = \int\limits_0^1 {{x^4}\,dx - \mathop {\lim }\limits_{n \to \infty } } \frac{1}{n} \times \int\limits_0^1 {{x^3}} \,dx \cr
& = \left[ {\frac{{{x^5}}}{5}} \right]_0^1 - 0 \cr
& = \frac{1}{5} \cr} $$
135.
If $$\left[ . \right]$$ denotes the greatest integer function, then $$\mathop {\lim }\limits_{n \to \infty } \frac{{\left[ x \right] + \left[ {2x} \right] + ..... + \left[ {nx} \right]}}{{{n^2}}}$$ is :
A
$$0$$
B
$$x$$
C
$$\frac{x}{2}$$
D
$$\frac{{{x^2}}}{2}$$
Answer :
$$\frac{x}{2}$$
View Solution
$$\eqalign{
& nx - 1 < \left[ {nx} \right] \leqslant nx. \cr
& {\text{Putting }}n = 1,\,2,\,3,.....,\,n\,{\text{and adding them,}} \cr
& x\sum n - n < \sum {\left[ {nx} \right] \leqslant x\sum n } \cr
& \therefore \,x.\frac{{\sum n }}{{{n^2}}} - \frac{1}{n} < \frac{{\sum {\left[ {nx} \right]} }}{{{n^2}}} \leqslant x.\frac{{\sum n }}{{{n^2}}}.....({\text{i}}) \cr
& {\text{Now, }}\mathop {\lim }\limits_{n \to \infty } \left\{ {x.\frac{{\sum n }}{{{n^2}}} - \frac{1}{n}} \right\} = x.\mathop {\lim }\limits_{n \to \infty } \frac{{\sum n }}{{{n^2}}} - \mathop {\lim }\limits_{n \to \infty } \frac{1}{n} = \frac{x}{2} \cr
& {\text{As the two limits are equal, by }}\left( {\text{i}} \right) \cr
& \mathop {\lim }\limits_{n \to \infty } \frac{{\sum {\left[ {nx} \right]} }}{{{n^2}}} = \frac{x}{2} \cr
& {\text{ }} \cr} $$
136.
If $$\mathop {\lim }\limits_{x \to 0} {\left( {1 + a\,\sin \,x} \right)^{{\text{cosec}}\,x}} = 3,$$ then $$a$$ is :
A
$${\text{ln 2}}$$
B
$${\text{ln 3}}$$
C
$${\text{ln 4}}$$
D
$${e^3}$$
Answer :
$${\text{ln 3}}$$
View Solution
$$\eqalign{
& {\text{Given }}3 = \mathop {\lim }\limits_{x \to 0} {\left( {1 + a\,\sin \,x} \right)^{{\text{cosec}}\,x}}\,\,\left[ {{1^\infty }{\text{ form}}} \right] \cr
& {\text{Put sin }}x = 4\,\,\,\,\therefore \,{\text{when}}\,x \to 0,\,y \to 0 \cr
& \therefore \,\mathop {\lim }\limits_{x \to 0} {\left( {1 + a\,\sin \,x} \right)^{{\text{cosec}}\,x}} = \mathop {\lim }\limits_{y \to 0} {\left( {1 + ay} \right)^{\frac{1}{y}}} = {e^a} \cr
& \therefore \,{e^a} = 3\,\,\, \Rightarrow a = {\log _e}3 = {\text{ln}}\,{\text{3}} \cr} $$
137.
If $$\mathop {\lim }\limits_{x \to 0} \,kx\,{\text{cosec}}\,x = \mathop {\lim }\limits_{x \to 0} \,x\,{\text{cosec}}\,kx,$$ then $$k =\,?$$
A
$$1$$
B
$$ - 1$$
C
$$ \pm 1$$
D
$$ \pm 2$$
Answer :
$$ \pm 1$$
View Solution
$$\eqalign{
& \mathop {\lim }\limits_{x \to 0} \,kx\,{\text{cosec}}\,x = \mathop {\lim }\limits_{x \to 0} \,x\,{\text{cosec}}\,kx \cr
& \Rightarrow k.\mathop {\lim }\limits_{x \to 0} \frac{x}{{\sin \,x}} = \frac{1}{k}\mathop {\lim }\limits_{x \to 0} \frac{{kx}}{{\sin \,kx}} \cr
& \Rightarrow k = \frac{1}{k} \cr
& \Rightarrow k = \pm 1 \cr} $$
138.
Evaluate $$\mathop {\lim }\limits_{x \to \infty } \,{2^{x - 1}}\tan \left( {\frac{a}{{{2^x}}}} \right)$$
A
$$a$$
B
$$2a$$
C
$$\frac{a}{2}$$
D
$$4a$$
Answer :
$$\frac{a}{2}$$
View Solution
$$\eqalign{
& {\text{We have,}} \cr
& \mathop {\lim }\limits_{x \to \infty } \,{2^{x - 1}}\tan \left( {\frac{a}{{{2^x}}}} \right) \cr
& = \mathop {\lim }\limits_{x \to \infty } \,\frac{a}{2}\frac{{\tan \left( {\frac{a}{{{2^x}}}} \right)}}{{\left( {\frac{a}{{{2^x}}}} \right)}}\,\,\,\left( {\frac{0}{0}{\text{ form}}} \right) \cr
& = \frac{a}{2}\mathop {\lim }\limits_{y \to 0} \frac{{\tan \,y}}{y} = \frac{a}{2}\,\,\,\,\,\left( {{\text{where }}y = \frac{a}{{{2^x}}}} \right) \cr} $$
139.
$$\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {x - 2} + \sqrt x - \sqrt 2 }}{{\sqrt {{x^2} - 4} }}$$ is equal to :
A
$$\frac{1}{2}$$
B
1
C
2
D
none of these
Answer :
$$\frac{1}{2}$$
View Solution
$$\eqalign{
& {\text{Limit}} = \mathop {\lim }\limits_{x \to 2} \left\{ {\frac{1}{{\sqrt {x + 2} }} + \frac{{\sqrt x - \sqrt 2 }}{{\sqrt {{x^2} - 4} }}} \right\} \cr
& = \frac{1}{2} + \mathop {\lim }\limits_{x \to 2} \frac{{x - 2}}{{\sqrt x + \sqrt 2 }}.\frac{1}{{\sqrt {\left( {x + 2} \right)\left( {x - 2} \right)} }} \cr
& = \frac{1}{2} + \mathop {\lim }\limits_{x \to 2} \frac{1}{{\sqrt x + \sqrt 2 }}.\sqrt {\frac{{x - 2}}{{x + 2}}} \cr
& = \frac{1}{2} \cr} $$
140.
Let the $${r^{th}}$$ term, $${t_r},$$ of a series is given by $${t_r} = \frac{r}{{1 + {r^2} + {r^4}}}.$$ Then $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{t_r}} $$ is :
A
$$\frac{1}{4}$$
B
1
C
$$\frac{1}{2}$$
D
none of these
Answer :
$$\frac{1}{2}$$
View Solution
$$\eqalign{
& {t_r} = \frac{1}{2}.\frac{{2r}}{{{{\left( {{r^2} + 1} \right)}^2} - {r^2}}} \cr
& = \frac{1}{2}\left\{ {\frac{1}{{{r^2} - r + 1}} - \frac{1}{{{r^2} + r + 1}}} \right\} \cr
& = \frac{1}{2}\left\{ {\frac{1}{{r\left( {r - 1} \right) + 1}} - \frac{1}{{\left( {r + 1} \right)r + 1}}} \right\} \cr
& \therefore \sum\limits_{r = 1}^n {{t_r}} = \sum\limits_{r = 1}^n {\frac{1}{2}\left\{ {f\left( r \right) - f\left( {r + 1} \right)} \right\}} {\text{, where }}f\left( r \right) = \frac{1}{{r\left( {r - 1} \right) + 1}} \cr
& = \frac{1}{2}\left\{ {f\left( 1 \right) - f\left( {n + 1} \right)} \right\} \cr
& = \frac{1}{2}\left\{ {1 - \frac{1}{{\left( {n + 1} \right)n + 1}}} \right\} \to \frac{1}{2}{\text{ as }}n \to \infty \cr} $$