Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

141. If $$f$$ be a function given by $$f\left( x \right) = 2{x^2} + 3x - 5.$$     Then $$f'\left( 0 \right) = mf'\left( { - 1} \right),$$     where $$m$$ is equal to :

A $$ - 1$$
B $$ - 2$$
C $$ - 3$$
D $$ - 4$$
Answer :   $$ - 3$$

142. If $$f\left( x \right),\,g\left( x \right)$$   be differentiable functions and $$f\left( 1 \right) = g\left( 1 \right) = 2,$$    then $$\mathop {\lim }\limits_{x \to 1} \frac{{f\left( 1 \right)g\left( x \right) - f\left( x \right)g\left( 1 \right) - f\left( 1 \right) + g\left( 1 \right)}}{{g\left( x \right) - f\left( x \right)}}$$        is equal to :

A 0
B 1
C 2
D none of these
Answer :   2

143. If $$f\left( x \right) = \mathop {\lim }\limits_{n \to \infty } n\left( {{x^{\frac{1}{n}}} - 1} \right),$$      then for $$x > 0,\,y > 0,\,f\left( {xy} \right)$$    is equal to :

A $$f\left( x \right)f\left( y \right)$$
B $$f\left( x \right) + f\left( y \right)$$
C $$f\left( x \right) - f\left( y \right)$$
D none of these
Answer :   $$f\left( x \right) + f\left( y \right)$$

144. Let $$\alpha $$ and $$\beta $$ be the roots of $$a{x^2} + bx + c = 0.$$     Then $$\mathop {\lim }\limits_{x \to \alpha } \frac{{1 - \cos \left( {a{x^2} + bx + c} \right)}}{{{{\left( {x - \alpha } \right)}^2}}}$$      is equal to :

A $$0$$
B $$\frac{1}{2}{\left( {\alpha - \beta } \right)^2}$$
C $$\frac{{{a^2}}}{2}{\left( {\alpha - \beta } \right)^2}$$
D none of these
Answer :   $$\frac{{{a^2}}}{2}{\left( {\alpha - \beta } \right)^2}$$

145. $$\mathop {\lim }\limits_{n \to \infty } {\left( {1 + \sin \frac{a}{n}} \right)^n}$$     is equal to :

A $${e^{\frac{a}{2}}}$$
B $${e^a}$$
C $$e$$
D $${e^{2a}}$$
Answer :   $${e^a}$$

146. $$\mathop {\lim }\limits_{x \to 0} \frac{{{3^x} - 1}}{{\sqrt {x + 1} - 1}}$$    is equal to :

A $${\log _e}9$$
B $${\log _e}3$$
C 0
D 1
Answer :   $${\log _e}9$$

147. $$\mathop {\lim }\limits_{x \to 1 + 0} \frac{{\int_1^x {\left| {t - 1} \right|dt} }}{{\sin \left( {x - 1} \right)}}$$     is equal to :

A 0
B 1
C $$-1$$
D none of these
Answer :   0