Limits MCQ Questions & Answers in Calculus | Maths
Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
141.
If $$f$$ be a function given by $$f\left( x \right) = 2{x^2} + 3x - 5.$$ Then $$f'\left( 0 \right) = mf'\left( { - 1} \right),$$ where $$m$$ is equal to :
142.
If $$f\left( x \right),\,g\left( x \right)$$ be differentiable functions and $$f\left( 1 \right) = g\left( 1 \right) = 2,$$ then $$\mathop {\lim }\limits_{x \to 1} \frac{{f\left( 1 \right)g\left( x \right) - f\left( x \right)g\left( 1 \right) - f\left( 1 \right) + g\left( 1 \right)}}{{g\left( x \right) - f\left( x \right)}}$$ is equal to :
A
0
B
1
C
2
D
none of these
Answer :
2
$$\eqalign{
& {\text{Limit}} = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( 1 \right)g'\left( x \right) - f'\left( x \right)g\left( 1 \right)}}{{g'\left( x \right) - f'\left( x \right)}} \cr
& = \mathop {\lim }\limits_{x \to 1} \frac{{2\left\{ {g'\left( x \right) - f'\left( x \right)} \right\}}}{{g'\left( x \right) - f'\left( x \right)}} \cr
& = \mathop {\lim }\limits_{x \to 1} 2 \cr
& = 2 \cr} $$
143.
If $$f\left( x \right) = \mathop {\lim }\limits_{n \to \infty } n\left( {{x^{\frac{1}{n}}} - 1} \right),$$ then for $$x > 0,\,y > 0,\,f\left( {xy} \right)$$ is equal to :
A
$$f\left( x \right)f\left( y \right)$$
B
$$f\left( x \right) + f\left( y \right)$$
C
$$f\left( x \right) - f\left( y \right)$$
D
none of these
Answer :
$$f\left( x \right) + f\left( y \right)$$
144.
Let $$\alpha $$ and $$\beta $$ be the roots of $$a{x^2} + bx + c = 0.$$ Then $$\mathop {\lim }\limits_{x \to \alpha } \frac{{1 - \cos \left( {a{x^2} + bx + c} \right)}}{{{{\left( {x - \alpha } \right)}^2}}}$$ is equal to :
A
$$0$$
B
$$\frac{1}{2}{\left( {\alpha - \beta } \right)^2}$$
C
$$\frac{{{a^2}}}{2}{\left( {\alpha - \beta } \right)^2}$$