Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

31. The values of $$p$$ and $$q$$ for which the function \[f\left( x \right) = \left\{ \begin{array}{l} \frac{{\sin \left( {p + 1} \right)x + \sin \,x}}{x},\,x < 0\\ q,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0\\ \frac{{\sqrt {x + {x^2}} - \sqrt x }}{{{x^{\frac{3}{2}}}}},\,\,\,\,\,\,\,\,\,x > 0 \end{array} \right.\]        is continuous for all $$x$$ in $$R,$$ are-

A $$p = \frac{5}{2},\,\,q = \frac{1}{2}$$
B $$p = - \frac{3}{2},\,\,q = \frac{1}{2}$$
C $$p = \frac{1}{2},\,\,q = \frac{3}{2}$$
D $$p = \frac{1}{2},\,\,q = - \frac{3}{2}$$
Answer :   $$p = - \frac{3}{2},\,\,q = \frac{1}{2}$$

32. $$\mathop {\lim }\limits_{x \to 0} {\left| x \right|^{\left[ {\cos \,x} \right]}}$$   is :

A $$1$$
B does not exist
C $$0$$
D none of these
Answer :   $$1$$

33. $$\mathop {\lim }\limits_{x \to 0} \frac{{x - \tan \,x}}{{x\,\tan \,x}}$$   is equal to :

A 0
B 1
C $$\frac{1}{2}$$
D none of these
Answer :   0

34. $$\mathop {\lim }\limits_{x \to 0} \frac{{{{\log }_e}\cos \,x}}{{{x^2}}}$$    is equal to :

A $$ - \frac{1}{2}$$
B $$\frac{1}{2}$$
C 0
D none of these
Answer :   $$ - \frac{1}{2}$$

35. $$\mathop {\lim }\limits_{x \to 0} \frac{{\sin \left[ {\cos \,x} \right]}}{{1 + \left[ {\cos \,x} \right]}}$$     ($$\left[ . \right]$$ denotes the greatest integer function)

A equal to 1
B equal to 0
C does not exist
D none of these
Answer :   equal to 0

36. $$\mathop {\lim }\limits_{n\, \to \,\infty } \frac{1}{n}\sum\limits_{r\, = \,1}^{2n} {\frac{r}{{\sqrt {{n^2} + {r^2}} }}} $$     equals:

A $$1 + \sqrt 5 $$
B $$ - 1 + \sqrt 5 $$
C $$ - 1 + \sqrt 2 $$
D $$1 + \sqrt 2 $$
Answer :   $$ - 1 + \sqrt 5 $$

37. $$\mathop {\lim }\limits_{x \to \infty } {\left( {\frac{{{x^2} + 5x + 3}}{{{x^2} + x + 2}}} \right)^x} = ?$$

A $${e^4}$$
B $${e^2}$$
C $${e^3}$$
D $$1$$
Answer :   $${e^4}$$

38. For $$x \in R,\,\,\,\mathop {\lim }\limits_{x\, \to \,\infty } {\left( {\frac{{x - 3}}{{x + 2}}} \right)^x} = ?$$

A $$e$$
B $${e^{ - \,1}}$$
C $${e^{ - \,5}}$$
D $${e^{ 5}}$$
Answer :   $${e^{ - \,5}}$$

39. Let $$a = \min \left\{ {{x^2} + 2x + 3,\,x\, \in \,R} \right\}$$       and $$b = \mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \,\theta }}{{{\theta ^2}}}.$$     The value of $$\sum\limits_{r = 0}^n {{a^r} \cdot {b^{n - r}}} $$   is :

A $$\frac{{{2^{n + 1}} - 1}}{{3 \cdot {2^n}}}$$
B $$\frac{{{2^{n + 1}} + 1}}{{3 \cdot {2^n}}}$$
C $$\frac{{{4^{n + 1}} - 1}}{{3 \cdot {2^n}}}$$
D none of these
Answer :   $$\frac{{{4^{n + 1}} - 1}}{{3 \cdot {2^n}}}$$

40. The graph of the function $$y = f\left( x \right)$$   has a unique tangent at the point $$\left( {a,\,0} \right)$$  through which the graph passes. Then $$\mathop {\lim }\limits_{x \to a} \frac{{{{\log }_e}\left\{ {1 + 6f\left( x \right)} \right\}}}{{3f\left( x \right)}}$$    is :

A 1
B 0
C 2
D none of these
Answer :   2