Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

51. The value of $$\mathop {\lim }\limits_{x \to \frac{\pi }{2}} {\tan ^2}x\left( {\sqrt {2\,{{\sin }^2}x + 3\sin \,x + 4} - \sqrt {{{\sin }^2}x + 6\sin \,x + 2} } \right)$$            is equal to :

A $$\frac{1}{{10}}$$
B $$\frac{1}{{11}}$$
C $$\frac{1}{{12}}$$
D $$\frac{1}{8}$$
Answer :   $$\frac{1}{{12}}$$

52. The value of $$\mathop {\lim }\limits_{x \to 0} \frac{{{{27}^x} - {9^x} - {3^x} + 1}}{{\sqrt 2 - \sqrt {1 + \cos \,x} }}$$     is :

A $$4\sqrt 2 {\left( {\log \,3} \right)^2}$$
B $$8\sqrt 2 {\left( {\log \,3} \right)^2}$$
C $$2\sqrt 2 {\left( {\log \,3} \right)^2}$$
D none of these
Answer :   $$8\sqrt 2 {\left( {\log \,3} \right)^2}$$

53. If $$x > 0$$  and $$g$$ is a bounded function, then $$\mathop {\lim }\limits_{n \to \infty } \frac{{f\left( x \right){e^{nx}} + g\left( x \right)}}{{{e^{nx}} + 1}}$$     is :

A $$0$$
B $$f\left( x \right)$$
C $$g\left( x \right)$$
D none of these
Answer :   $$f\left( x \right)$$

54. If $$y = \left( {1 + \frac{1}{x}} \right)\left( {1 + \frac{2}{x}} \right)\left( {1 + \frac{3}{x}} \right).....\left( {1 + \frac{n}{x}} \right)$$         and $$x \ne 0,$$  then $$\frac{{dy}}{{dx}}$$  when $$x = - 1$$   is:

A $$n!$$
B $$\left( {n - 1} \right)!$$
C $${\left( { - 1} \right)^n}\left( {n - 1} \right)!$$
D $${\left( { - 1} \right)^n}n!$$
Answer :   $${\left( { - 1} \right)^n}\left( {n - 1} \right)!$$

55. $$\mathop {\lim }\limits_{n \to \infty } \frac{{{1^p} + {2^p} + {3^p} + ..... + {n^p}}}{{{n^{p + 1}}}}$$      is-

A $$\frac{1}{{p + 1}}$$
B $$\frac{1}{{1 - p}}$$
C $$\frac{1}{p} - \frac{1}{{p - 1}}$$
D $$\frac{1}{{p + 2}}$$
Answer :   $$\frac{1}{{p + 1}}$$

56. Let \[f\left( x \right) = \left\{ \begin{array}{l} x\,\sin \left( {\frac{1}{x}} \right) + \sin \left( {\frac{1}{x}} \right),\,\,\,x \ne 0\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0 \end{array} \right.\]         then $$\mathop {\lim }\limits_{x \to \infty } f\left( x \right)$$   equals :

A $$0$$
B $$ - \frac{1}{2}$$
C $$1$$
D none of these
Answer :   $$1$$

57. Let $$p = \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 + {{\tan }^2}\,\sqrt x } \right)^{\frac{1}{{2x}}}}$$     then $$\log \,p$$  is equal to :

A $$\frac{1}{2}$$
B $$\frac{1}{4}$$
C $$2$$
D $$1$$
Answer :   $$\frac{1}{2}$$

58. Let $$f\left( x \right)$$  be a polynomial function satisfying $$f\left( x \right).f\left( {\frac{1}{x}} \right) = f\left( x \right) + f\left( {\frac{1}{x}} \right).$$       If $$f\left( 4 \right) = 65$$   and $${l_1},\,{l_2},\,{l_3}$$   are in GP, then $$f'\left( {{l_1}} \right),\,f'\left( {{l_2}} \right),\,f'\left( {{l_3}} \right)$$     are in :

A AP
B GP
C HP
D none of these
Answer :   GP

59. $$\mathop {\lim }\limits_{x \to \infty } {\left( {\frac{{{x^2} + 5x + 3}}{{{x^2} + x + 3}}} \right)^x}$$     equal-

A $${e^4}$$
B $${e^2}$$
C $${e^3}$$
D $$1$$
Answer :   $${e^4}$$

60. $$\mathop {\lim }\limits_{x \to 0} \left[ {{\text{cose}}{{\text{c}}^3}x \cdot \cot \,x - 2\,{{\cot }^3}x \cdot {\text{cosec}}\,x + \frac{{{{\cot }^4}x}}{{\sec \,x}}} \right]$$         is equal to :

A $$1$$
B $$ - 1$$
C $$0$$
D none of these
Answer :   $$1$$