53.
If $$x > 0$$ and $$g$$ is a bounded function, then $$\mathop {\lim }\limits_{n \to \infty } \frac{{f\left( x \right){e^{nx}} + g\left( x \right)}}{{{e^{nx}} + 1}}$$ is :
A
$$0$$
B
$$f\left( x \right)$$
C
$$g\left( x \right)$$
D
none of these
Answer :
$$f\left( x \right)$$
$$\eqalign{
& {\text{Given that, }}x > 0\,{\text{and }}g\left( x \right){\text{ is bounded function}}{\text{.}} \cr
& {\text{Limit}} = \mathop {\lim }\limits_{n \to \infty } \frac{{f\left( x \right){e^{nx}} + g\left( x \right)}}{{{e^{nx}} + 1}} \cr
& = \mathop {\lim }\limits_{n \to \infty } \frac{{f\left( x \right)}}{{1 + \left( {\frac{1}{{{e^{nx}}}}} \right)}} + \frac{{g\left( x \right)}}{{{e^{nx}} + 1}} \cr
& = \frac{{f\left( x \right)}}{{1 + 0}} + \frac{{{\text{finite}}}}{\infty } \cr
& = f\left( x \right) \cr} $$
54.
If $$y = \left( {1 + \frac{1}{x}} \right)\left( {1 + \frac{2}{x}} \right)\left( {1 + \frac{3}{x}} \right).....\left( {1 + \frac{n}{x}} \right)$$ and $$x \ne 0,$$ then $$\frac{{dy}}{{dx}}$$ when $$x = - 1$$ is:
A
$$n!$$
B
$$\left( {n - 1} \right)!$$
C
$${\left( { - 1} \right)^n}\left( {n - 1} \right)!$$
57.
Let $$p = \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 + {{\tan }^2}\,\sqrt x } \right)^{\frac{1}{{2x}}}}$$ then $$\log \,p$$ is equal to :
A
$$\frac{1}{2}$$
B
$$\frac{1}{4}$$
C
$$2$$
D
$$1$$
Answer :
$$\frac{1}{2}$$
$$\eqalign{
& \ln \,P = \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{2x}}\ln \left( {1 + {{\tan }^2}\,\sqrt x } \right) \cr
& \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{x}\ln \left( {\sec \sqrt x } \right) \cr} $$
Applying L hospital's rule :
$$\eqalign{
& = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sec \sqrt x .\tan \sqrt x }}{{\sec \sqrt x .2\sqrt x }} \cr
& = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\tan \sqrt x }}{{2\sqrt x }} \cr
& = \frac{1}{2} \cr} $$
58.
Let $$f\left( x \right)$$ be a polynomial function satisfying $$f\left( x \right).f\left( {\frac{1}{x}} \right) = f\left( x \right) + f\left( {\frac{1}{x}} \right).$$ If $$f\left( 4 \right) = 65$$ and $${l_1},\,{l_2},\,{l_3}$$ are in GP, then $$f'\left( {{l_1}} \right),\,f'\left( {{l_2}} \right),\,f'\left( {{l_3}} \right)$$ are in :
A
AP
B
GP
C
HP
D
none of these
Answer :
GP
Since, $$f\left( x \right)$$ is a polynomial function satisfying
$$\eqalign{
& f\left( x \right).f\left( {\frac{1}{x}} \right) = f\left( x \right) + f\left( {\frac{1}{x}} \right), \cr
& \therefore \,f\left( x \right) = {x^n} + 1{\text{ or }}f\left( x \right) = - {x^n} + 1 \cr
& {\text{If }}f\left( x \right) = - {x^n} + 1,{\text{ then }}f\left( 4 \right) = - {4^n} + 1 \ne 65 \cr
& {\text{So, }}f\left( x \right) = {x^n} + 1{\text{ Since, }}f\left( 4 \right) = 65 \cr
& \therefore \,{4^n} + 1 = 65\,\, \Rightarrow \,n = 3 \cr
& \therefore \,f\left( x \right) = {x^3} + 1\,\, \Rightarrow f'\left( x \right) = 3{x^2} \cr
& \therefore \,f'\left( {{l_1}} \right) = 3l_1^2,\,f'\left( {{l_2}} \right) = 3l_2^2,\,f'\left( {{l_3}} \right) = 3l_3^2 \cr
& {\text{Since, }}{l_1},\,{l_2},\,{l_3}{\text{ are in GP}}{\text{.}} \cr
& \therefore \,f'\left( {{l_1}} \right),\,f'\left( {{l_2}} \right),\,f'\left( {{l_3}} \right){\text{ are also in GP}}{\text{.}} \cr} $$