Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

61. Let the sequence $$ < {b_n} > $$  of real numbers satisfies the recurrence relation $${b_{n + 1}} = \frac{1}{3}\left( {2{b_n} + \frac{{125}}{{b_n^2}}} \right),\,{b_n} \ne 0.$$       Then find $$\mathop {\lim }\limits_{n \to \infty } \,{b_n}.$$

A $$10$$
B $$15$$
C $$5$$
D $$25$$
Answer :   $$5$$

62. $$\mathop {\lim }\limits_{x \to \infty } \frac{{\log \,{x^n} - \left[ x \right]}}{{\left[ x \right]}},n \in N,$$       ( $$\left[ x \right]$$ denotes greatest integer less than or equal to $$x$$ )

A has value $$-1$$
B has value $$0$$
C has value $$1$$
D does not exist
Answer :   does not exist

63. $$\mathop {\lim }\limits_{x \to 0} {\left\{ {\frac{{1 + \tan \,x}}{{1 + \sin \,x}}} \right\}^{{\text{cosec}}\,x}}$$     is equal to :

A $$\frac{1}{e}$$
B $$1$$
C $$e$$
D $${e^2}$$
Answer :   $$1$$

64. $$\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{\left( {n + 1} \right)\left( {n + 2} \right).....3n}}{{{n^{2n}}}}} \right)^{\frac{1}{n}}}$$     is equal to:

A $${\frac{{9}}{{{e^2}}}}$$
B $$3\,\log \,3 - 2$$
C $${\frac{{18}}{{{e^4}}}}$$
D $${\frac{{27}}{{{e^2}}}}$$
Answer :   $${\frac{{27}}{{{e^2}}}}$$

65. If $${z_r} = \cos \frac{{r\alpha }}{{{n^2}}} + i\,\sin \,\frac{{r\alpha }}{{{n^2}}},$$     where $$r = 1,\,2,\,3,.....,\,n,$$     then $$\mathop {\lim }\limits_{n \to \infty } \,{z_1}{z_2}{z_3}.....{z_n}$$     is equal to :

A $$\cos \,\alpha + i\,\sin \,\alpha $$
B $$\cos \left( {\frac{\alpha }{2}} \right) - i\,\sin \left( {\frac{\alpha }{2}} \right)$$
C $${e^{i\,\frac{\alpha }{2}}}$$
D $$\root 3 \of {{e^{i\alpha }}} $$
Answer :   $${e^{i\,\frac{\alpha }{2}}}$$

66. $$\mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\sin \left[ {x - 3} \right]}}{{\left[ {x - 3} \right]}}} \right],$$    where $$\left[ . \right]$$ denotes greatest integer function is :

A $$0$$
B $$1$$
C does not exist
D $$\sin \,1$$
Answer :   does not exist

67. $$\mathop {\lim }\limits_{x\, \to \,0} \frac{{\sin \left( {\pi \,{{\cos }^2}x} \right)}}{{{x^2}}}$$     equals-

A $$ - \pi $$
B $$ \pi $$
C $$\frac{\pi }{2}$$
D 1
Answer :   $$ \pi $$

68. Let $$\alpha $$ and $$\beta $$ be the distinct roots of $$a{x^2} + bx + c = 0,$$    then $$\mathop {\lim }\limits_{x \to \alpha } \frac{{1 - \cos \left( {a{x^2} + bx + c} \right)}}{{{{\left( {x - \alpha } \right)}^2}}}$$     is equal to

A $$\frac{{{a^2}}}{2}{\left( {\alpha - \beta } \right)^2}$$
B $$0$$
C $$\frac{{ - {a^2}}}{2}{\left( {\alpha - \beta } \right)^2}$$
D $$\frac{1}{2}{\left( {\alpha - \beta } \right)^2}$$
Answer :   $$\frac{{{a^2}}}{2}{\left( {\alpha - \beta } \right)^2}$$

69. If \[f\left( x \right) = \left\{ \begin{array}{l} {x^n}\sin \left( {\frac{1}{{{x^2}}}} \right),\,\,x \ne 0\\ 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0 \end{array} \right.,\left( {n\, \in \,I} \right),\]         then :

A $$\mathop {\lim }\limits_{x \to 0} f\left( x \right){\text{ exist for }}n > 1$$
B $$\mathop {\lim }\limits_{x \to 0} f\left( x \right){\text{ exist for }}n < 0$$
C $$\mathop {\lim }\limits_{x \to 0} f\left( x \right){\text{ does not exist for any value of }}n$$
D $$\mathop {\lim }\limits_{x \to 0} f\left( x \right){\text{ cannot be determined}}$$
Answer :   $$\mathop {\lim }\limits_{x \to 0} f\left( x \right){\text{ exist for }}n > 1$$

70. $$\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {1 - \cos \,2\left( {x - 1} \right)} }}{{x - 1}}$$

A exists and it is $$\sqrt 2 $$
B exists and it is $$ - \sqrt 2 $$
C does not exist because $$x - 1 \to 0$$
D does not exist because $${\text{LH}}\,{\text{lim}} \ne {\text{RH}}\,{\text{lim}}$$
Answer :   does not exist because $${\text{LH}}\,{\text{lim}} \ne {\text{RH}}\,{\text{lim}}$$