Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

81. $$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A $$0$$
B $$ - \frac{1}{2}$$
C $$ \frac{1}{2}$$
D none of these
Answer :   $$ - \frac{1}{2}$$

82. $$\mathop {\lim }\limits_{x \to 0} \frac{{\left( {1 - \cos \,2x} \right)\left( {3 + \cos \,x} \right)}}{{x\,\tan \,4x}}$$      is equal to-

A $$ - \frac{1}{4}$$
B $$\frac{1}{2}$$
C $$1$$
D $$2$$
Answer :   $$2$$

83. What is $$\mathop {\lim }\limits_{x \to 0} \frac{{\sin \,2x + 4x}}{{2x + \sin \,4x}}$$    equal to ?

A $$0$$
B $$\frac{1}{2}$$
C $$1$$
D $$2$$
Answer :   $$1$$

84. The value of $$\mathop {\lim }\limits_{x \to 0} \left( {{{\left( {\sin \,x} \right)}^{\frac{1}{x}}} + {{\left( {1 + x} \right)}^{\sin \,x}}} \right),$$       where $$x>0$$  is :

A $$0$$
B $$-1$$
C $$1$$
D $$2$$
Answer :   $$1$$

85. For each $$t \in R,$$  let $$\left[ t \right]$$ be the greatest integer less than or equal to $$t.$$ Then $$\mathop {\lim }\limits_{x \to {0^ + }} x\left( {\left[ {\frac{1}{x}} \right] + \left[ {\frac{2}{x}} \right] + ..... + \left[ {\frac{{15}}{x}} \right]} \right)$$

A is equal to $$15$$
B is equal to $$120$$
C dies not exist (in $$R$$)
D is equal to $$0$$
Answer :   is equal to $$120$$

86. $$\mathop {\lim }\limits_{x \to 0} \frac{{x\left[ x \right]}}{{\sin \,\left| x \right|}},$$   where $$\left[ \cdot \right]$$ denotes the greatest integer function, is :

A 0
B 1
C not existent
D none of these
Answer :   not existent

87. $$\mathop {\lim }\limits_{x \to a} \frac{x}{{x - a}}.\int_a^x {f\left( x \right)} dx$$     is equal to :

A $$f\left( a \right)$$
B $$af\left( a \right)$$
C 0
D none of these
Answer :   $$af\left( a \right)$$

88. The value of $$\mathop {\lim }\limits_{x \to \frac{\pi }{2}} {\left[ {{1^{\frac{1}{{{{\cos }^2}x}}}} + {2^{\frac{1}{{{{\cos }^2}x}}}} + ..... + {n^{\frac{1}{{{{\cos }^2}x}}}}} \right]^{{{\cos }^2}x}}$$       is :

A $$0$$
B $$n$$
C $$\infty $$
D $$\frac{{n\left( {n + 1} \right)}}{2}$$
Answer :   $$n$$

89. $$\mathop {\lim }\limits_{n \to \infty } \frac{{{4^{\frac{1}{n}}} - 1}}{{{3^{\frac{1}{n}}} - 1}}$$   is equal to :

A $${\log _4}3$$
B 1
C $${\log _3}4$$
D none of these
Answer :   $${\log _3}4$$

90. If $$\mathop {\lim }\limits_{x \to a} \left[ {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right]$$   exist, then which one of the following correct ?

A Both $$\mathop {\lim }\limits_{x \to a} f\left( x \right)$$   and $$\mathop {\lim }\limits_{x \to a} g\left( x \right)$$   must exist
B $$\mathop {\lim }\limits_{x \to a} f\left( x \right)$$   need not exist but $$\mathop {\lim }\limits_{x \to a} g\left( x \right)$$   must exist
C Both $$\mathop {\lim }\limits_{x \to a} f\left( x \right)$$   and $$\mathop {\lim }\limits_{x \to a} g\left( x \right)$$   need not exist
D none of these
Answer :   none of these