Sets and Relations MCQ Questions & Answers in Calculus | Maths

Learn Sets and Relations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

131. $$R$$ is a relation from $$\left\{ {11,\,12,\,13} \right\}$$   to $$\left\{ {8,\,10,\,12} \right\}$$   defined by $$y = x - 3.$$   The relation $${R^{ - 1}}$$ is :

A $$\left\{ {\left( {11,\,8} \right),\,\left( {13,\,10} \right)} \right\}$$
B $$\left\{ {\left( {8,\,11} \right),\,\left( {10,\,13} \right)} \right\}$$
C $$\left\{ {\left( {8,\,11} \right),\,\left( {9,\,12} \right),\,\left( {10,\,13} \right)} \right\}$$
D None of these
Answer :   $$\left\{ {\left( {8,\,11} \right),\,\left( {10,\,13} \right)} \right\}$$

132. Consider the following statements.
Let $$A = \left\{ {1,\,2,\,3,\,4} \right\}$$     and $$B = \left\{ {5,\,7,\,9} \right\}$$
$$\eqalign{ & {\text{I}}{\text{.}}\,A \times B = B \times A \cr & {\text{II}}{\text{.}}\,n\left( {A \times B} \right) = n\left( {B \times A} \right) \cr} $$
Choose the correct option.

A Statement-I is true
B Statement-II is true
C Both are true
D Both are false
Answer :   Statement-II is true

133. If $$A$$ and $$B$$ are subsets of a set $$X,$$ then what is $$\left\{ {A \cap \left( {X - B} \right)} \right\} \cup B$$     equal to :

A $$A \cup B$$
B $$A \cap B$$
C $$A$$
D $$B$$
Answer :   $$A \cup B$$

134. If $$f\left( x \right) = ax + b$$    and $$g\left( x \right) = cx + d,$$    then $$f\left\{ {g\left( x \right)} \right\} = g\left\{ {f\left( x \right)} \right\}$$     is equivalent to :

A $$f\left( a \right) = g\left( c \right)$$
B $$f\left( b \right) = g\left( b \right)$$
C $$f\left( d \right) = g\left( b \right)$$
D $$f\left( c \right) = g\left( a \right)$$
Answer :   $$f\left( d \right) = g\left( b \right)$$

135. If $$A$$ and $$B$$ are two sets then $$\left( {A - B} \right) \cup \left( {B - A} \right) \cup \left( {A \cap B} \right)$$      is equal to :

A $$A \cup B$$
B $${A \cap B}$$
C $$A$$
D $$B'$$
Answer :   $$A \cup B$$

136. $$\eqalign{ & {\text{Let }}A = \left\{ {x\, \in \,W,{\text{ the set of whole numbers and }}x < 3} \right\} \cr & \,\,\,\,\,\,\,\,\,\,B = \left\{ {x\, \in \,N,{\text{ the set of natural numbers and }}2 \leqslant x < 4} \right\} \cr & {\text{and }}C = \left\{ {3,\,4} \right\} \cr} ,$$
then how many elements will $$\left( {A \cup B} \right) \times C$$   contain ?

A $$6$$
B $$8$$
C $$10$$
D $$12$$
Answer :   $$8$$

137. Let $$A,\,B,\,C$$   be finite sets. Suppose that $$n\left( A \right) = 10,\,n\left( B \right) = 15,\,n\left( C \right) = 20,\,n\left( {A \cap B} \right) = 8$$          and $$n\left( {B \cap C} \right) = 9.$$   Then the possible value of $$n\left( {A \cup B \cup C} \right)$$    is :

A 26
B 27
C 28
D any of the three values 26, 27, 28 is possible
Answer :   any of the three values 26, 27, 28 is possible

138. Let $$\rho $$ be the relation on the set $$R$$ of all real numbers defined by setting $$a\rho b$$  iff $$\left| {a - b} \right| \leqslant \frac{1}{2}.$$   Then $$\rho $$ is :

A reflexive and symmetric but not transitive
B symmetric and transitive but not reflexive
C transitive but neither reflexive nor symmetric
D none of these
Answer :   reflexive and symmetric but not transitive

139. Let $$N$$ be the set of non-negative integers, $$I$$ the set of integers, $${N_p}$$ the set of non-positive integers, $$E$$ the set of even integers and $$P$$ the set of prime numbers. Then :

A $$I - N = {N_p}$$
B $$N \cap {N_p} = \phi $$
C $$E \cap P = \phi $$
D $$N\Delta {N_p} = I - \left\{ 0 \right\}$$
Answer :   $$N\Delta {N_p} = I - \left\{ 0 \right\}$$

140. Consider the following statement.
$$\eqalign{ & {\text{I}}{\text{.}}\,{\text{If }}\left( {a,\,1} \right),\left( {b,\,2} \right){\text{ and }}\left( {c,\,1} \right){\text{ are in }}A \times B\,{\text{and}}\,n\left( A \right) = 3,\,n\left( B \right) = 2,\,{\text{then}}\,A = \left\{ {a,\,b,\,c} \right\}{\text{ and }}B = \left\{ {1,\,2} \right\} \cr & {\text{II}}{\text{.}}\,{\text{If }}A = \left( {1,\,2} \right){\text{ and }}B = \left( {3,\,4} \right)\,{\text{then}}\,A \times \left( {B \cap \phi } \right){\text{ is equal to}}\,A \times B \cr} $$
Choose the correct option.

A Only I is true
B Only II is true
C Both are true
D Neither I nor II is true
Answer :   Only I is true