Sets and Relations MCQ Questions & Answers in Calculus | Maths
Learn Sets and Relations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
131.
$$R$$ is a relation from $$\left\{ {11,\,12,\,13} \right\}$$ to $$\left\{ {8,\,10,\,12} \right\}$$ defined by $$y = x - 3.$$ The relation $${R^{ - 1}}$$ is :
A
$$\left\{ {\left( {11,\,8} \right),\,\left( {13,\,10} \right)} \right\}$$
B
$$\left\{ {\left( {8,\,11} \right),\,\left( {10,\,13} \right)} \right\}$$
C
$$\left\{ {\left( {8,\,11} \right),\,\left( {9,\,12} \right),\,\left( {10,\,13} \right)} \right\}$$
133.
If $$A$$ and $$B$$ are subsets of a set $$X,$$ then what is $$\left\{ {A \cap \left( {X - B} \right)} \right\} \cup B$$ equal to :
A
$$A \cup B$$
B
$$A \cap B$$
C
$$A$$
D
$$B$$
Answer :
$$A \cup B$$
Since, $$A$$ and $$B$$ are subsets of set $$X$$ therefore
$$\eqalign{
& A \subseteq X{\text{ and }}B \subseteq X \cr
& {\text{Consider}}\,\left\{ {A \cap \left( {X - B} \right)} \right\} \cup B \cr
& = \left( {A \cap B'} \right) \cup B \cr
& = A \cup B\,\,\,\,\,\,\,\,\,\left( {\because \,\,B' \cap B = B} \right) \cr} $$
134.
If $$f\left( x \right) = ax + b$$ and $$g\left( x \right) = cx + d,$$ then $$f\left\{ {g\left( x \right)} \right\} = g\left\{ {f\left( x \right)} \right\}$$ is equivalent to :
A
$$f\left( a \right) = g\left( c \right)$$
B
$$f\left( b \right) = g\left( b \right)$$
C
$$f\left( d \right) = g\left( b \right)$$
D
$$f\left( c \right) = g\left( a \right)$$
Answer :
$$f\left( d \right) = g\left( b \right)$$
$$\eqalign{
& {\text{Given, }} \cr
& f\left( x \right) = ax + b,\,g\left( x \right) = cx + d{\text{ and }}f\left\{ {g\left( x \right)} \right\} = g\left\{ {f\left( x \right)} \right\} \cr
& \Rightarrow f\left( {cx + d} \right) = g\left( {ax + b} \right) \cr
& \Rightarrow a\left( {cx + d} \right) + b = c\left( {ax + b} \right) + d \cr
& \Rightarrow acx + ad + b = cax + bc + d \cr
& \Rightarrow ad + b = bc + d \cr
& \Rightarrow f\left( d \right) = g\left( b \right) \cr} $$
135.
If $$A$$ and $$B$$ are two sets then $$\left( {A - B} \right) \cup \left( {B - A} \right) \cup \left( {A \cap B} \right)$$ is equal to :
A
$$A \cup B$$
B
$${A \cap B}$$
C
$$A$$
D
$$B'$$
Answer :
$$A \cup B$$
$$\eqalign{
& \left( {A - B} \right) \cup \left( {B - A} \right) \cup \left( {A \cap B} \right) \cr
& A - B = A \cap B' \cr
& B - A = B \cap A' \cr} $$
$$\left( {A - B} \right) \cup \left( {B - A} \right) = $$ the elements that are only in $$A$$ and $$B$$, which are not common in $$A$$ and $$B$$.
$$\left( {A \cap B} \right) = $$ elements common in $$A$$ and $$B$$.
$$\left( {A - B} \right) \cup \left( {B - A} \right) \cup \left( {A \cap B} \right) = $$ elements in $$A$$ and $$B$$ and common in both $$ = A \cup B$$
Hence, option A is correct.
136.
$$\eqalign{
& {\text{Let }}A = \left\{ {x\, \in \,W,{\text{ the set of whole numbers and }}x < 3} \right\} \cr
& \,\,\,\,\,\,\,\,\,\,B = \left\{ {x\, \in \,N,{\text{ the set of natural numbers and }}2 \leqslant x < 4} \right\} \cr
& {\text{and }}C = \left\{ {3,\,4} \right\} \cr} ,$$
then how many elements will $$\left( {A \cup B} \right) \times C$$ contain ?
137.
Let $$A,\,B,\,C$$ be finite sets. Suppose that $$n\left( A \right) = 10,\,n\left( B \right) = 15,\,n\left( C \right) = 20,\,n\left( {A \cap B} \right) = 8$$ and $$n\left( {B \cap C} \right) = 9.$$ Then the possible value of $$n\left( {A \cup B \cup C} \right)$$ is :
A
26
B
27
C
28
D
any of the three values 26, 27, 28 is possible
Answer :
any of the three values 26, 27, 28 is possible
$$\eqalign{
& {\text{We have}} \cr
& n\left( {A \cup B \cup C} \right) = n\left( A \right) + n\left( B \right) + n\left( C \right) - n\left( {A \cap B} \right) - n\left( {B \cap C} \right) - n\left( {C \cap A} \right) + n\left( {A \cap B \cap C} \right) \cr
& = 10 + 15 + 20 - 8 - 9 - n\left( {C \cap A} \right) + n\left( {A \cap B \cap C} \right) \cr
& = 28 - \left\{ {n\left( {C \cap A} \right) - n\left( {A \cap B \cap C} \right)} \right\}.....({\text{i}}) \cr
& {\text{Since }}\,n\left( {C \cap A} \right) \geqslant n\left( {A \cap B \cap C} \right) \cr
& {\text{We have }}n\left( {C \cap A} \right) - n\left( {A \cap B \cap C} \right) \geqslant 0.....({\text{ii}}) \cr
& {\text{From (i) and (ii) : }}n\left( {A \cup B \cup C} \right) \leqslant 28.....({\text{iii}}) \cr
& {\text{Now, }}n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right) \cr
& = 10 + 15 - 8 = 17 \cr
& {\text{and }}n\left( {B \cup C} \right) = n\left( B \right) + n\left( C \right) - n\left( {B \cap C} \right) \cr
& = 15 + 20 - 9 = 26 \cr
& {\text{Since, }}n\left( {A \cup B \cup C} \right) \geqslant n\left( {A \cup C} \right)\,{\text{and }}n\left( {A \cup B \cup C} \right) \geqslant n\left( {B \cup C} \right){\text{,}} \cr
& {\text{we have }}n\left( {A \cup B \cup C} \right) \geqslant 17{\text{ and }}n\left( {A \cup B \cup C} \right) \geqslant 26 \cr
& {\text{Hence }}n\left( {A \cup B \cup C} \right) \geqslant 26.....({\text{iv}}) \cr
& {\text{From (iii) and (iv) we obtain}} \cr
& {\text{26}} \leqslant n\left( {A \cup B \cup C} \right) \leqslant 28 \cr
& {\text{Also }}n\left( {A \cup B \cup C} \right){\text{ is a positive integer}} \cr
& \therefore \,n\left( {A \cup B \cup C} \right) = 26{\text{ or }}27{\text{ or }}28 \cr} $$
138.
Let $$\rho $$ be the relation on the set $$R$$ of all real numbers defined by setting $$a\rho b$$ iff $$\left| {a - b} \right| \leqslant \frac{1}{2}.$$ Then $$\rho $$ is :
A
reflexive and symmetric but not transitive
B
symmetric and transitive but not reflexive
C
transitive but neither reflexive nor symmetric
D
none of these
Answer :
reflexive and symmetric but not transitive
$$\eqalign{
& \rho \,{\text{is reflexive, since }}\left| {a - a} \right| = 0 < \frac{1}{2}{\text{ for all }}a\, \in \,R \cr
& \rho \,{\text{is symmetric, since }} \Rightarrow \left| {b - a} \right| < \frac{1}{2} \cr
& \rho \,{\text{is not transitive}}{\text{.}} \cr
& {\text{For, if we take three numbers }}\frac{3}{4},\frac{1}{3},\frac{1}{8} \cr
& {\text{Then,}}\,\,\left| {\frac{3}{4} - \frac{1}{3}} \right| = \frac{5}{{12}} < \frac{1}{2}{\text{ and }}\left| {\frac{1}{3} - \frac{1}{8}} \right| = \frac{5}{{24}} < \frac{1}{2} \cr
& {\text{But, }}\left| {\frac{3}{4} - \frac{1}{8}} \right| = \frac{5}{8} > \frac{1}{2} \cr
& {\text{Thus, }}\frac{3}{4}\rho \frac{1}{3}{\text{ and }}\frac{1}{3}\rho \frac{1}{8}{\text{ but }}\frac{3}{4}\left( { \sim \rho } \right)\frac{1}{8} \cr} $$
139.
Let $$N$$ be the set of non-negative integers, $$I$$ the set of integers, $${N_p}$$ the set of non-positive integers, $$E$$ the set of even integers and $$P$$ the set of prime numbers. Then :
A
$$I - N = {N_p}$$
B
$$N \cap {N_p} = \phi $$
C
$$E \cap P = \phi $$
D
$$N\Delta {N_p} = I - \left\{ 0 \right\}$$
Answer :
$$N\Delta {N_p} = I - \left\{ 0 \right\}$$