Sets and Relations MCQ Questions & Answers in Calculus | Maths
Learn Sets and Relations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
151.
Let $$f:R \to R$$ be given by $$f\left( x \right) = {\left( {x + 1} \right)^2} - 1,\,x \geqslant - 1.$$ Then $${f^{ - 1}}\left( x \right),$$ is :
A
$$ - 1 + \sqrt {x + 1} $$
B
$$ - 1 - \sqrt {x + 1} $$
C
does not exist because $$f$$ is not one-one
D
does not exist because $$f$$ is not onto
Answer :
$$ - 1 + \sqrt {x + 1} $$
$$\eqalign{
& {\text{Let }}x,\,y\, \in \,R{\text{ such that }}x \geqslant - 1,\,y \geqslant - 1 \cr
& {\text{Then, }}f\left( x \right) = f\left( y \right) \cr
& \Rightarrow {\left( {x + 1} \right)^2} - 1 = {\left( {y + 1} \right)^2} - 1 \cr
& \Rightarrow {x^2} + 2x = {y^2} + 2y \cr
& \Rightarrow {x^2} - {y^2} = - 2\left( {x - y} \right) \cr
& \Rightarrow \left( {x - y} \right)\left( {x + y + 2} \right) = 0 \cr
& \Rightarrow x - y = 0{\text{ or }}x + y + 2 = 0 \cr
& \Rightarrow x = y{\text{ or }}x = y = - 1 \cr
& \therefore \,f{\text{ is one - one}}{\text{.}} \cr} $$
Also, $$f$$ is onto as for all $$y \geqslant - 1,$$ there exists $$x = - 1 + \sqrt {y + 1} \geqslant - 1$$ such that $$f\left( x \right) = y$$
$$\eqalign{
& \therefore \,f{\text{ is invertible}}{\text{.}} \cr
& {\text{Let }}f\left( x \right) = y \cr
& \Rightarrow {\left( {x + 1} \right)^2} - 1 = y \cr
& \Rightarrow x = - 1 \pm \sqrt {y + 1} \cr
& {\text{But, }}x \geqslant - 1 \cr
& \therefore \,x = - 1 + \sqrt {y + 1} \cr
& \Rightarrow {f^{ - 1}}\left( y \right) = - 1 + \sqrt {y + 1} \cr
& {\text{Hence, }}{f^{ - 1}}\left( x \right) = - 1 + \sqrt {x + 1} \cr} $$
152.
$$f\left( x \right) = \left| {x - 1} \right|,\,f:{R^ + } \to R$$ and $$g\left( x \right) = {e^x},\,g:\left[ { - 1,\,\infty } \right) \to R.$$ If the function fog $$\left( x \right)$$ is defined, then its domain and range respectively are :
A
$$\left( {0,\,\infty } \right){\text{ and }}\left[ {0,\,\infty } \right)$$
B
$$\left[ { - 1,\,\infty } \right){\text{ and }}\left[ {0,\,\infty } \right)$$
C
$$\left[ { - 1,\,\infty } \right){\text{ and }}\left[ {1 - \frac{1}{e},\,\infty } \right)$$
D
$$\left[ { - 1,\,\infty } \right){\text{ and }}\left[ {\frac{1}{e} - 1,\,\infty } \right)$$
\[\begin{array}{l}
f\left( x \right) = \left| {x - 1} \right| = \left\{ \begin{array}{l}
1 - x,\,\,\,0 < x < 1\\
x - 1,\,\,\,x \ge 1
\end{array} \right.\\
g\left( x \right) = {e^x},\,x \ge - 1\\
\left( {{\rm{fog}}} \right)\left( x \right) = \left\{ \begin{array}{l}
1 - g\left( x \right),\,\,\,0 < g\left( x \right) < 1\,\,\,{\rm{ i}}{\rm{.e}}{\rm{., }} - 1 \le x < 0\\
g\left( x \right) - 1,\,\,\,g\left( x \right) \ge 1\,\,\,{\rm{i}}{\rm{.e}}{\rm{., }}\,0 \le x
\end{array} \right.\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left\{ \begin{array}{l}
1 - {e^x},\,\,\,\,\, - 1 \le x < 0\\
{e^x} - 1,\,\,\,\,\,\,\,x \ge 0
\end{array} \right.
\end{array}\]
$$\therefore {\text{ domain}} = \left[ { - 1,\,\infty } \right)$$
fog is decreasing in $$\left[ { - 1,\,0 } \right)$$ and increasing in $$\left[ {0,\,\infty } \right)$$
$$\eqalign{
& {\text{fog}}\left( { - 1} \right) = 1 - \frac{1}{e}{\text{ and fog}}\left( 0 \right) = 0 \cr
& {\text{As }}x \to \infty ,\,{\text{ fog}}\left( x \right) \to \infty , \cr
& \therefore {\text{ range}} = \left[ {0,\,\infty } \right) \cr} $$
153.
If $$g\left( {f\left( x \right)} \right) = \left| {\sin \,x} \right|$$ and $$f\left( {g\left( x \right)} \right) = {\left( {\sin \sqrt x } \right)^2},$$ then :
A
$$f\left( x \right) = {\sin ^2}x,\,g\left( x \right) = \sqrt x $$
B
$$f\left( x \right) = \sin \,x,\,g\left( x \right) = \left| x \right|$$
C
$$f\left( x \right) = {x^2},\,g\left( x \right) = \sin \sqrt x $$
D
$$f$$ and $$g$$ cannot be determined
Answer :
$$f\left( x \right) = {\sin ^2}x,\,g\left( x \right) = \sqrt x $$
$$g\left( {f\left( x \right)} \right) = \left| {\sin \,x} \right|$$ indicates that possibly $$f\left( x \right) = \sin \,x,\,g\left( x \right) = \left| x \right|$$
Assuming it correct, $$f\left( {g\left( x \right)} \right) = f\left( {\left| x \right|} \right) = \sin \left| x \right|,$$ which is not correct.
$$f\left( {g\left( x \right)} \right) = {\left( {\sin \sqrt x } \right)^2}$$ indicates that possibly
or, $$g\left( x \right) = \sin \sqrt x ,\,\,f\left( x \right) = {x^2}$$
Then $$g\left( {f\left( x \right)} \right) = g\left( {{{\sin }^2}x} \right) = \sqrt {\sin \,x} = \left| {\sin \,x} \right|$$ (for the first combination), which is given.
Hence, $$f\left( x \right) = {\sin ^2}x,\,g\left( x \right) = \sqrt x $$
154.
Let $$f\left( x \right) = {x^2} + 3x - 3,\,x > 0.$$ If $$n$$ points $${x_1},\,{x_2},\,{x_3},\,.....,\,{x_n}$$ are so chosen on the $$x$$-axis such that
(i) $$\frac{1}{n}\sum\limits_{i = 1}^n {{f^{ - 1}}\left( {{x_i}} \right)} = f\left( {\frac{1}{n}\sum\limits_{i = 1}^n {{x_i}} } \right)$$
(ii) $$\sum\limits_{i = 1}^n {{f^{ - 1}}\left( {{x_i}} \right)} = \sum\limits_{i = 1}^n {{x_i}} ,$$ where $${f^{ - 1}}$$ denotes the inverse of $$f.$$
The value of $$\frac{{{x_1} + {x_2} + ..... + {x_n}}}{n} =\, ?$$
155.
Let $$R$$ be a relation on $$N$$ defined by $$x+2y= 8.$$ The domain of $$R$$ is :
A
$$\left\{ {2,\,4,\,8} \right\}$$
B
$$\left\{ {2,\,4,\,6,\,8} \right\}$$
C
$$\left\{ {2,\,4,\,6} \right\}$$
D
$$\left\{ {1,\,2,\,3,\,4} \right\}$$
Answer :
$$\left\{ {2,\,4,\,6} \right\}$$
$$R$$ be a relation on $$N$$ defined by $$x + 2y = 8$$
$$\therefore \,R = \left\{ {\left( {2,\,3} \right);\left( {4,\,2} \right);\left( {6,\,1} \right)} \right\}$$
Hence, Domain of $$R = \left\{ {2,\,4,\,6} \right\}$$
156.
A survey of 500 television viewers produced the following information, 285 watch football, 195 watch hockey, 115 watch basket ball, 45 watch football and basket ball, 70 watch football and hockey, 50 watch hockey and basket ball, 50 do not watch any of the three games. The number of viewers who was exactly one of the three games are :
A
325
B
310
C
405
D
372
Answer :
325
$$\eqalign{
& a + e + f + g = 285,\,\,b + d + f + g = 195 \cr
& c + d + e + f = 115,\,\,e + g = 45,\,\,f + g = 70,\,\,d + g = 50 \cr
& a + b + c + d + e + f + g = 500 - 50 = 450 \cr
& {\text{We obtain,}} \cr
& a + f = 240,\,\,b + d = 125,\,\,c + e = 65 \cr
& a + e = 215,\,\,b + f = 145,\,\,b + c + d = 165 \cr
& a + c + e = 255;\,\,a + b + f = 335 \cr
& {\text{Solving we get}} \cr
& b = 95,\,\,c = 40,\,\,a = 190,\,\,d = 30,\,\,e = 25,\,\,f = 50\,{\text{and}}\,g = 20 \cr
& {\text{Desired quantity}} = a + b + c = 325 \cr} $$
157.
The domain of the function $$f\left( x \right) = \frac{1}{{\sqrt {{}^{10}{C_{x - 1}} - 3 \times {}^{10}{C_x}} }}$$ contains the points :
A
$$9,\,10,\,11$$
B
$$9,\,10,\,12$$
C
all natural numbers
D
none of these
Answer :
none of these
Given function is defined if
$$\eqalign{
& {}^{10}{C_{x - 1}} > 3{}^{10}{C_x} \cr
& {\text{or }}\frac{1}{{11 - x}} > \frac{3}{x} \cr
& {\text{or }}4x > 33 \cr
& {\text{or }}x \geqslant 9 \cr
& {\text{But }}x \leqslant 10 \cr
& \therefore \,x = 9,\,10 \cr} $$
158.
If $$A$$ and $$B$$ are two disjoint sets, then which one of the following is correct ?
A
$$A - B = A - \left( {A \cap B} \right)$$
B
$$B - A' = A \cap B$$
C
$$A \cap B = \left( {A - B} \right) \cap B$$
D
All of these
Answer :
$$A - B = A - \left( {A \cap B} \right)$$
Since, $$A$$ and $$B$$ are two disjoints therefore $$A \cap B = \phi $$
$$\therefore \,A - B = A - \left( {A \cap B} \right)$$
159.
What does the shaded region in the Venn diagram given below represent ?