Sets and Relations MCQ Questions & Answers in Calculus | Maths
Learn Sets and Relations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
161.
The relation ‘‘ congruence modulo $$m$$ ’’ is :
A
reflexive only
B
transitive only
C
symmetric only
D
an equivalence relation
Answer :
an equivalence relation
If $$R$$ be the relation, $$x\,R\,y \Leftrightarrow x - y$$ is divisible by $$m.$$
$$x\,R\,x$$ because $$x-x$$ is divisible by $$m.$$ So, $$R$$ is reflexive.
$$x\,R\,y \Rightarrow y\,R\,x.$$ So, $$R$$ is symmetric.
$$x\,R\,y$$ and $$y\,R\,z \Rightarrow x - y = {k_1}m,\,\,y - z = {k_2}m$$
$$\therefore x - z = \left( {{k_1} + {k_2}} \right)m.$$ So, $$R$$ is transitive.
As $$R$$ is reflexive, symmetric and transitive, it is an equivalence relation.
162.
If $$A = \left\{ {4n + 2|n{\text{ is a natural number}}} \right\}$$ and $$B = \left\{ {3n|n{\text{ is a natural number}}} \right\},$$ then what is $$\left( {A \cap B} \right)$$ equal to ?
A
$$\left\{ {12{n^2} + 6n|n{\text{ is a natural number}}} \right\}$$
B
$$\left\{ {24n - 12|n{\text{ is a natural number}}} \right\}$$
C
$$\left\{ {60n + 30|n{\text{ is a natural number}}} \right\}$$
D
$$\left\{ {12n - 6|n{\text{ is a natural number}}} \right\}$$
Answer :
$$\left\{ {12n - 6|n{\text{ is a natural number}}} \right\}$$
163.
The cardinality of the set $$P\left\{ {P\left[ {P\left( \phi \right)} \right]} \right\}$$ is :
A
$$0$$
B
$$1$$
C
$$2$$
D
$$4$$
Answer :
$$4$$
$$P\left( \phi \right)$$ is the power set of the set $$\phi .$$
$$\therefore $$ Cardinality $$ = P\left\{ {P\left[ {P\left( \phi \right)} \right]} \right\} = 4$$
164.
If $$f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$$ and $$S = \left\{ {x\,I\,R:f\left( x \right) = f\left( { - x} \right)} \right\};$$ then $$S :$$
A
contains exactly two elements.
B
contains more than two elements.
C
is an empty set.
D
contains exactly one element.
Answer :
contains exactly two elements.
$$\eqalign{
& f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x\,\,\,\,\,.....\left( 1 \right) \cr
& f\left( {\frac{1}{x}} \right) + 2f\left( x \right) = \frac{3}{x}\,\,\,\,\,\,.....\left( 2 \right) \cr} $$
Adding (1) and (2)
$$ \Rightarrow \,\,f\left( x \right) + f\left( {\frac{1}{x}} \right) = x + \frac{1}{x}$$
Substracting (1) from (2)
$$ \Rightarrow \,\,f\left( x \right) - f\left( {\frac{1}{x}} \right) = \frac{3}{x} - 3x$$
On adding the above equations
$$\eqalign{
& \Rightarrow \,\,f\left( x \right) = \frac{2}{x} - x \cr
& f\left( x \right) = f\left( { - x} \right) \cr
& \Rightarrow \,\,\frac{2}{x} - x = \frac{{ - 2}}{x} + x \cr
& \Rightarrow \,\,x = \frac{2}{x} \cr
& {x^2} = 2\,\,\,\,{\text{or }}\,x = \sqrt 2 , - \sqrt 2 \cr} $$
165.
Given $$n\left( U \right) = 20,\,n\left( A \right) = 12,\,n\left( B \right) = 9,\,n\left( {A \cap B} \right) = 4,$$ where $$U$$ is the universal set, $$A$$ and $$B$$ are subsets of $$U$$, then $$n\left( {{{\left( {A \cup B} \right)}^C}} \right) = ?$$
166.
If $$X = \left\{ {{4^n} - 3n - 1:n \in N} \right\}$$ and $$Y = \left\{ {9\left( {n - 1} \right):n \in N} \right\},$$ where $$N$$ is the set of natural numbers, then $$X \cup Y$$ is equal to:
A
$$X$$
B
$$Y$$
C
$$N$$
D
$$Y - X$$
Answer :
$$Y$$
$$\eqalign{
& {4^n} - 3n - 1 \cr
& = {\left( {1 + 3} \right)^n} - 3n - 1 \cr
& = \left[ {^n{C_0} + {\,^n}{C_1}.3 + {\,^n}{C_2}{{.3}^2} + ..... + {\,^n}{C_n}{{.3}^n}} \right] - 3n - 1 \cr
& = 9\left[ {^n{C_2} + {\,^n}{C_3}.3 + ..... + {\,^n}{C_n}{{.3}^{n - 2}}} \right] \cr} $$
$$\therefore \,\,{4^n} - 3n - 1$$ is a multiple of 9 for all $$n.$$
∴ $$X$$ = {$$x : x$$ is a multiple of 9 }
Also, $$Y = \left\{ {9\left( {n - 1} \right):n \in N} \right\} = $$ {All multiples of 9}
Clearly $$X \subset Y.$$
$$\therefore X \cup Y = Y.$$
167.
Which of the following is true ?
A
$$a\, \in \,\left\{ {\left\{ a \right\},\,b} \right\}$$
B
$$\left\{ {b,\,c} \right\}\, \subset \left\{ {a,\,\left\{ {b,\,c} \right\}} \right\}$$
C
$$\left\{ {a,\,b} \right\}\, \subset \left\{ {a,\,\left\{ {b,\,c} \right\}} \right\}$$
D
none of these
Answer :
none of these
$$a$$ is not an element of $$\left\{ {\left\{ a \right\},\,b} \right\}$$
$$\therefore \,a\, \notin \,\left\{ {\left\{ a \right\},\,b} \right\}$$
$$\left\{ {b,\,c} \right\}$$ is the element of $$\left\{ {a,\,\left\{ {b,\,c} \right\}} \right\}$$
$$\eqalign{
& \therefore \,\left\{ {b,\,c} \right\}\, \in \,\left\{ {a,\,\left\{ {b,\,c} \right\}} \right\} \cr
& b\, \in \,\left\{ {a,\,b} \right\}{\text{ but }}b \notin \,\left\{ {a,\,\left\{ {b,\,c} \right\}} \right\} \cr
& \therefore \,\left\{ {a,\,b} \right\}\, \not\subset \,\left\{ {a,\,\left\{ {b,\,c} \right\}} \right\} \cr} $$
168.
Let $$f:\left\{ {x,\,y,\,z} \right\} \to \left\{ {1,\,2,\,3} \right\}$$ be a one-one mapping such that only one of the following three statements is true and remaining two are false : $$f\left( x \right) \ne 2,\,f\left( y \right) = 2,\,f\left( z \right) \ne 1,$$ then :
A
$$f\left( x \right) > f\left( y \right) > f\left( z \right)$$
B
$$f\left( x \right) < f\left( y \right) < f\left( z \right)$$
C
$$f\left( y \right) < f\left( x \right) < f\left( z \right)$$
D
$$f\left( y \right) < f\left( z \right) < f\left( z \right)$$
Answer :
$$f\left( y \right) < f\left( x \right) < f\left( z \right)$$
$$\eqalign{
& {\text{Let }}f\left( x \right) \ne 2{\text{ be true }} \cr
& {\text{and }}f\left( y \right) = 2,\,f\left( z \right) \ne 1{\text{ are false}} \cr
& \Rightarrow f\left( x \right) \ne 2,\,f\left( y \right) \ne 2,\,f\left( z \right) = 1 \cr
& \Rightarrow f\left( x \right) = 3,\,f\left( y \right) = 3,\,f\left( z \right) = 1 \cr} $$
but the function is many one, similarly to other cases.
169.
The domain and range of the relation $$R$$ given by $$R = \left\{ {\left( {x,\,y} \right):y = x + \frac{6}{x};{\text{ where }}x,\,y\, \in \,N{\text{ and }}x < 6} \right\}$$ is :
A
$$\left\{ {1,\,2,\,3} \right\},\,\left\{ {7,\,5} \right\}$$
B
$$\left\{ {1,\,2} \right\},\,\left\{ {7,\,5} \right\}$$
C
$$\left\{ {2,\,3} \right\},\,\left\{ {5} \right\}$$
170.
If $$g\left( x \right) = {x^2} + x - 2$$ and $$\frac{1}{2}\left( {gof} \right)\left( x \right) = 2{x^2} - 5x + 2,$$ then $$f\left( x \right)$$ is equal to :