3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

91. Let $$\vec a = \hat i + 2\hat j + \hat k,\,\vec b = \hat i - \hat j + \hat k,\,\vec c = \hat i + \hat j - \hat k.$$         A vector in the plane of $$\vec a$$ and $$\vec b$$ whose projection on $$\vec c$$ is $$\frac{1}{{\sqrt 3 }},$$  is :

A $$4\hat i - \hat j + 4\hat k$$
B $$3\hat i + \hat j - 3\hat k$$
C $$2\hat i + \hat j - 2\hat k$$
D $$4\hat i + \hat j - 4\hat k$$
Answer :   $$4\hat i - \hat j + 4\hat k$$

92. The equation of the plane passing through the line $$\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{z}{3}$$     and parallel to the direction whose direction numbers are $$3,\,4,\,2$$   is :

A $$14x - 5y - 11z = 19$$
B $$3x + 4y + 2z + 1 = 0$$
C $$2x - y + 3z = 3$$
D none of these
Answer :   $$14x - 5y - 11z = 19$$

93. If $$\overrightarrow r .\overrightarrow a = \overrightarrow r .\overrightarrow b = \overrightarrow r .\overrightarrow c = \frac{1}{2}$$      for some non-zero vector $$\overrightarrow r ,$$ then the area of the triangle whose vertices are $$A\left( {\overrightarrow a } \right),\,B\left( {\overrightarrow b } \right)$$   and $$C\left( {\overrightarrow c } \right)$$  is ($$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are non-coplanar)

A $$\left| {\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]} \right|$$
B $$\left| {\overrightarrow r } \right|$$
C $$\left| {\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]\overrightarrow r } \right|$$
D None of these
Answer :   $$\left| {\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]\overrightarrow r } \right|$$

94. The vectors $${\vec a}$$ and $${\vec b}$$ are not perpendicular and $${\vec c}$$ and $${\vec d}$$ are two vectors satisfying $$\vec b \times \vec c = \vec b \times \vec d$$   and $$\vec a.\vec d = 0$$   Then the vector $${\vec d}$$ is equal to :

A $$\vec c + \left( {\frac{{\vec a.\vec c}}{{\vec a.\vec b}}} \right)\vec b$$
B $$\vec b + \left( {\frac{{\vec b.\vec c}}{{\vec a.\vec b}}} \right)\vec c$$
C $$\vec c - \left( {\frac{{\vec a.\vec c}}{{\vec a.\vec b}}} \right)\vec b$$
D $$\vec b - \left( {\frac{{\vec b.\vec c}}{{\vec a.\vec b}}} \right)\vec c$$
Answer :   $$\vec c - \left( {\frac{{\vec a.\vec c}}{{\vec a.\vec b}}} \right)\vec b$$

95. If $$\vec a,\,\vec b,\,\vec c$$   are non-coplanar vectors and $$\lambda $$ is a real number, then the vectors $$\vec a + 2\vec b + 3\vec c,\,\lambda \vec b + 4\vec c$$     and $$\left( {2\lambda - 1} \right)\vec c$$   are non coplanar for :

A no value of $$\lambda $$
B all except one value of $$\lambda $$
C all except two values of $$\lambda $$
D all values of $$\lambda $$
Answer :   all except two values of $$\lambda $$

96. If $$\overrightarrow {AB} = \overrightarrow b $$   and $$\overrightarrow {AC} = \overrightarrow c $$   then the length of the perpendicular from $$A$$ to the line $$BC\,:$$

A $$\frac{{\left| {\overrightarrow b \times \overrightarrow c } \right|}}{{\left| {\overrightarrow b + \overrightarrow c } \right|}}$$
B $$\frac{{\left| {\overrightarrow b \times \overrightarrow c } \right|}}{{\left| {\overrightarrow b - \overrightarrow c } \right|}}$$
C $$\frac{1}{2}\frac{{\left| {\overrightarrow b \times \overrightarrow c } \right|}}{{\left| {\overrightarrow b - \overrightarrow c } \right|}}$$
D none of these
Answer :   $$\frac{{\left| {\overrightarrow b \times \overrightarrow c } \right|}}{{\left| {\overrightarrow b - \overrightarrow c } \right|}}$$

97. Let $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   be three unit vectors of which $$\overrightarrow b $$ and $$\overrightarrow c $$ are nonparallel. Let the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ be $$\alpha $$ and that between $$\overrightarrow a $$ and $$\overrightarrow c $$ be $$\beta .$$ If $$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \frac{1}{2}\overrightarrow b $$     then :

A $$\alpha = \frac{\pi }{3},\,\,\beta = \frac{\pi }{2}$$
B $$\alpha = \frac{\pi }{2},\,\,\beta = \frac{\pi }{3}$$
C $$\alpha = \frac{\pi }{6},\,\,\beta = \frac{\pi }{3}$$
D none of these
Answer :   $$\alpha = \frac{\pi }{2},\,\,\beta = \frac{\pi }{3}$$

98. If $$\overrightarrow a ,\,\overrightarrow b $$  and $$\overrightarrow c $$ are the position vectors of the vertices of an equilateral triangle whose orthocenter is at the origin, then which one of the following is correct ?

A $$\overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow 0 $$
B $$\overrightarrow a + \overrightarrow b + \overrightarrow c = {\text{unit vector}}$$
C $$\overrightarrow a + \overrightarrow b = \overrightarrow c $$
D $$\overrightarrow a = \overrightarrow b + \overrightarrow c $$
Answer :   $$\overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow 0 $$

99. $$\left[ {\overrightarrow a \,\,\overrightarrow b + \overrightarrow c \,\,\overrightarrow a + \overrightarrow b + \overrightarrow c } \right]$$     is equal to :

A $$0$$
B $$2\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
C $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
D none of these
Answer :   $$0$$

100. The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A $$\frac{4}{{13}}$$
B $$4$$
C $$\frac{2}{7}$$
D none of these
Answer :   none of these