3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
91.
Let $$\vec a = \hat i + 2\hat j + \hat k,\,\vec b = \hat i - \hat j + \hat k,\,\vec c = \hat i + \hat j - \hat k.$$ A vector in the plane of $$\vec a$$ and $$\vec b$$ whose projection on $$\vec c$$ is $$\frac{1}{{\sqrt 3 }},$$ is :
A
$$4\hat i - \hat j + 4\hat k$$
B
$$3\hat i + \hat j - 3\hat k$$
C
$$2\hat i + \hat j - 2\hat k$$
D
$$4\hat i + \hat j - 4\hat k$$
Answer :
$$4\hat i - \hat j + 4\hat k$$
A vector in the plane of $${\vec a}$$ and $${\vec b}$$ is
$$\vec u = \vec a + \lambda \vec b = \left( {1 + \lambda } \right)\hat i + \left( {2 - \lambda } \right)\hat j + \left( {1 + \lambda } \right)\hat k$$
Projection of $${\vec u}$$ on $$\vec c = \frac{1}{{\sqrt 3 }}\,\,\, \Rightarrow \frac{{\vec u.\vec c}}{{\left| {\vec c} \right|}} = \frac{1}{{\sqrt 3 }}$$
$$\eqalign{
& \Rightarrow \vec u.\vec c = 1\,\, \Rightarrow \left| {1 + \lambda + 2 - \lambda - 1 - \lambda } \right| = 1 \cr
& \Rightarrow \left| {2 - \lambda } \right| = 1\,\, \Rightarrow \lambda = 1{\text{ or }}3 \cr
& \Rightarrow \vec u = 2\hat i + \hat j + 2\hat k{\text{ or 4}}\hat i - \hat j + 4\hat k \cr} $$
92.
The equation of the plane passing through the line $$\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{z}{3}$$ and parallel to the direction whose direction numbers are $$3,\,4,\,2$$ is :
A
$$14x - 5y - 11z = 19$$
B
$$3x + 4y + 2z + 1 = 0$$
C
$$2x - y + 3z = 3$$
D
none of these
Answer :
$$14x - 5y - 11z = 19$$
Equation of plane passing through given line is given by
$$a\left( {x - 1} \right) + b\left( {y + 1} \right) + cz = 0$$
Also direction ratio of line are $$2,\,-1,\,3$$
$$ \Rightarrow 2a - b + 3c = 0......\left( 1 \right)$$
and plane is parallel to direction with direction $$3,\,4,\,2$$
$$ \Rightarrow 3a + 4b + 2c = 0......\left( 2 \right)$$
Solving equation (1) and (2), we get $$a = \frac{{ - 14c}}{{11}},\,\,b = \frac{{5c}}{{11}}$$
Hence, required place is $$14x - 5y - 11z = 19$$
93.
If $$\overrightarrow r .\overrightarrow a = \overrightarrow r .\overrightarrow b = \overrightarrow r .\overrightarrow c = \frac{1}{2}$$ for some non-zero vector $$\overrightarrow r ,$$ then the area of the triangle whose vertices are $$A\left( {\overrightarrow a } \right),\,B\left( {\overrightarrow b } \right)$$ and $$C\left( {\overrightarrow c } \right)$$ is ($$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are non-coplanar)
A
$$\left| {\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]} \right|$$
B
$$\left| {\overrightarrow r } \right|$$
C
$$\left| {\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]\overrightarrow r } \right|$$
D
None of these
Answer :
$$\left| {\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]\overrightarrow r } \right|$$
Any vector $$\overrightarrow r $$ can be represented in terms of three non-coplanar vectors $$\overrightarrow a ,\,\overrightarrow b $$ and $$\overrightarrow c $$ as
$$\overrightarrow r = x\left( {\overrightarrow a \times \overrightarrow b } \right) + y\left( {\overrightarrow b \times \overrightarrow c } \right) + z\left( {\overrightarrow c \times \overrightarrow a } \right)......\left( {\text{i}} \right)$$
Taking dot product with $$\overrightarrow a ,\,\overrightarrow b $$ and $$\overrightarrow c ,$$ respectively, we have
$$x = \frac{{\overrightarrow r .\overrightarrow c }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}},\,y = \frac{{\overrightarrow r .\overrightarrow a }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}{\text{ and}}\,z = \frac{{\overrightarrow r .\overrightarrow b }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
From $$\left( {\text{i}} \right),$$ we have
$$\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]\overrightarrow r = \frac{1}{2}\left( {\overrightarrow a \times \overrightarrow b + \overrightarrow b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a } \right)$$
$$\therefore $$ Area of $$\Delta ABC = \frac{1}{2}\left| {\overrightarrow a \times \overrightarrow b + \overrightarrow b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a } \right| = \left| {\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]\overrightarrow r } \right|$$
94.
The vectors $${\vec a}$$ and $${\vec b}$$ are not perpendicular and $${\vec c}$$ and $${\vec d}$$ are two vectors satisfying $$\vec b \times \vec c = \vec b \times \vec d$$ and $$\vec a.\vec d = 0$$ Then the vector $${\vec d}$$ is equal to :
A
$$\vec c + \left( {\frac{{\vec a.\vec c}}{{\vec a.\vec b}}} \right)\vec b$$
B
$$\vec b + \left( {\frac{{\vec b.\vec c}}{{\vec a.\vec b}}} \right)\vec c$$
C
$$\vec c - \left( {\frac{{\vec a.\vec c}}{{\vec a.\vec b}}} \right)\vec b$$
D
$$\vec b - \left( {\frac{{\vec b.\vec c}}{{\vec a.\vec b}}} \right)\vec c$$
$$\eqalign{
& \vec a.\vec b \ne 0,\,\,\,\vec a.\vec d = 0 \cr
& {\text{Now, }}\vec b \times \vec c = \vec b \times \vec d \cr
& \Rightarrow \vec a \times \left( {\vec b \times \vec c} \right) = \vec a \times \left( {\vec b \times \vec d} \right) \cr
& \Rightarrow \left( {\vec a.\vec c} \right)\vec b - \left( {\vec a.\vec b} \right)\vec c = \left( {\vec a.\vec d} \right)\vec b - \left( {\vec a.\vec b} \right)\vec d \cr
& \Rightarrow \left( {\vec a.\vec b} \right)\vec d = - \left( {\vec a.\vec c} \right)\vec b + \left( {\vec a.\vec b} \right)\vec c \cr
& \Rightarrow \vec d = \vec c - \left( {\frac{{\vec a.\vec c}}{{\vec a.\vec b}}} \right)\vec b \cr} $$
95.
If $$\vec a,\,\vec b,\,\vec c$$ are non-coplanar vectors and $$\lambda $$ is a real number, then the vectors $$\vec a + 2\vec b + 3\vec c,\,\lambda \vec b + 4\vec c$$ and $$\left( {2\lambda - 1} \right)\vec c$$ are non coplanar for :
A
no value of $$\lambda $$
B
all except one value of $$\lambda $$
C
all except two values of $$\lambda $$
D
all values of $$\lambda $$
Answer :
all except two values of $$\lambda $$
Vectors $$\vec a + 2\vec b + 3\vec c,\,\lambda \vec b + 4\vec c$$ and $$\left( {2\lambda - 1} \right)\vec c$$ are coplanar if \[\left| \begin{array}{l}
1\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3\\
0\,\,\,\,\lambda \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4\\
0\,\,\,\,0\,\,\,\,\,\,2\lambda - 1
\end{array} \right| = 0\]
$$\eqalign{
& \Rightarrow \lambda \left( {2\lambda - 1} \right) = 0 \cr
& \Rightarrow \lambda = 0\,\,{\text{or}}\,\,\frac{1}{2} \cr} $$
$$\therefore $$ Forces are noncoplanar for all $$\lambda ,$$ except $$\lambda = 0,\,\frac{1}{2}$$
96.
If $$\overrightarrow {AB} = \overrightarrow b $$ and $$\overrightarrow {AC} = \overrightarrow c $$ then the length of the perpendicular from $$A$$ to the line $$BC\,:$$
A
$$\frac{{\left| {\overrightarrow b \times \overrightarrow c } \right|}}{{\left| {\overrightarrow b + \overrightarrow c } \right|}}$$
B
$$\frac{{\left| {\overrightarrow b \times \overrightarrow c } \right|}}{{\left| {\overrightarrow b - \overrightarrow c } \right|}}$$
C
$$\frac{1}{2}\frac{{\left| {\overrightarrow b \times \overrightarrow c } \right|}}{{\left| {\overrightarrow b - \overrightarrow c } \right|}}$$
D
none of these
Answer :
$$\frac{{\left| {\overrightarrow b \times \overrightarrow c } \right|}}{{\left| {\overrightarrow b - \overrightarrow c } \right|}}$$
$${\text{ar}}\left( {\Delta ABC} \right) = \frac{1}{2}\left| {\overrightarrow b \times \overrightarrow c } \right| = \frac{1}{2}\left| {\overrightarrow b - \overrightarrow c } \right|h,$$ where $$h = $$ the length of the perpendicular.
$$\therefore \,\,h = \frac{{\left| {\overrightarrow b \times \overrightarrow c } \right|}}{{\left| {\overrightarrow b - \overrightarrow c } \right|}}.$$
97.
Let $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ be three unit vectors of which $$\overrightarrow b $$ and $$\overrightarrow c $$
are nonparallel. Let the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ be $$\alpha $$ and that between $$\overrightarrow a $$ and $$\overrightarrow c $$ be $$\beta .$$ If $$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \frac{1}{2}\overrightarrow b $$ then :
A
$$\alpha = \frac{\pi }{3},\,\,\beta = \frac{\pi }{2}$$
B
$$\alpha = \frac{\pi }{2},\,\,\beta = \frac{\pi }{3}$$
C
$$\alpha = \frac{\pi }{6},\,\,\beta = \frac{\pi }{3}$$
$$\eqalign{
& \overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \frac{1}{2}\overrightarrow b \,\,\,\,\,\, \Rightarrow \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c = \frac{1}{2}\overrightarrow b \cr
& \therefore \,\overrightarrow a .\overrightarrow c = \frac{1}{2},\,\,\,\,\overrightarrow a .\overrightarrow b = 0 \cr
& \therefore \,\left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\cos \,\beta = \frac{1}{2},\,\,\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \,\alpha = 0 \cr
& {\text{or }}\cos \,\beta = \frac{1}{2},\,\,\cos \,\alpha = 0\,\,\, \Rightarrow \,\beta = \frac{\pi }{3},\,\alpha = \frac{\pi }{2} \cr} $$
98.
If $$\overrightarrow a ,\,\overrightarrow b $$ and $$\overrightarrow c $$ are the position vectors of the vertices of an equilateral triangle whose orthocenter is at the origin, then which one of the following is correct ?
A
$$\overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow 0 $$
B
$$\overrightarrow a + \overrightarrow b + \overrightarrow c = {\text{unit vector}}$$
C
$$\overrightarrow a + \overrightarrow b = \overrightarrow c $$
D
$$\overrightarrow a = \overrightarrow b + \overrightarrow c $$
Answer :
$$\overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow 0 $$
Position vectors of vertices $$A,\,B$$ and $$C$$ are $$\overrightarrow a ,\,\overrightarrow b $$ and $$\overrightarrow c .$$
$$\because $$ triangle is equilateral.
$$\therefore $$ Centroid and orthocenter will coincide.
Centroid $$ \equiv $$ orthocenter position vector $$ = \frac{1}{3}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$$
$$\because $$ given in question orthocenter is at origin.
Hence, $$\frac{1}{3}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right) = 0{\text{ or }}\overrightarrow a + \overrightarrow b + \overrightarrow c = 0$$
99.
$$\left[ {\overrightarrow a \,\,\overrightarrow b + \overrightarrow c \,\,\overrightarrow a + \overrightarrow b + \overrightarrow c } \right]$$ is equal to :
A
$$0$$
B
$$2\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
C
$$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
D
none of these
Answer :
$$0$$
$$\eqalign{
& \,\,\,\,\,\,\,\left\{ {\overrightarrow a \times \left( {\overrightarrow b + \overrightarrow c } \right)} \right\}.\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right) \cr
& = \left( {\overrightarrow a \times \overrightarrow b + \overrightarrow a \times \overrightarrow c } \right).\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right) \cr
& = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] + \left[ {\overrightarrow a \,\,\overrightarrow c \,\,\overrightarrow b } \right] \cr
& = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] - \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] \cr
& = 0 \cr} $$
100.
The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$ is :