3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

101. If $$A = \left( {1,\,1,\,1} \right),\,B = \left( {2,\, - 1,\,3} \right),\,C = \left( {0,\,4,\, - 2} \right),\,D = \left( {1,\,2,\,\lambda } \right)$$             and $$AB,\,AC$$   and $$AD$$  are coplanar then $$\lambda $$ is :

A $$1$$
B $$0$$
C $$ - 1$$
D $$3$$
Answer :   $$0$$

102. If $$\overrightarrow p $$ and $$\overrightarrow q $$ are non-collinear unit vectors and $$\left| {\overrightarrow p + \overrightarrow q } \right| = \sqrt 3 ,$$    then $$\left( {2\overrightarrow p - 3\overrightarrow q } \right).\left( {3\overrightarrow p + \overrightarrow q } \right)$$      is equal to :

A $$0$$
B $$\frac{1}{3}$$
C $$ - \frac{1}{3}$$
D $$ - \frac{1}{2}$$
Answer :   $$ - \frac{1}{2}$$

103. If $${a^2} + {b^2} + {c^2} = 1$$    where $$a,\,b,\,c\, \in \,R,$$    then the maximum value of $${\left( {4a - 3b} \right)^2} + {\left( {5b - 4c} \right)^2} + {\left( {3c - 5a} \right)^2}{\text{ is :}}$$

A $$25$$
B $$50$$
C $$144$$
D none of these
Answer :   $$50$$

104. A particles is acted upon by constant forces $$4\hat i + \hat j - 3\hat k$$   and $$3\hat i + \hat j - \hat k$$   which displace it from a point $$\hat i + 2\hat j + 3\hat k$$   to the point $$5\hat i + 4\hat j + \hat k.$$   The work done in standard units by the forces is given by :

A $$15$$
B $$30$$
C $$25$$
D $$40$$
Answer :   $$40$$

105. If the vectors $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   and $$\overrightarrow d $$ are coplanar then $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right)$$     is equal to :

A $$\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d $$
B $$\overrightarrow 0 $$
C $$\overrightarrow a + \overrightarrow b = \overrightarrow c + \overrightarrow d $$
D none of these
Answer :   $$\overrightarrow 0 $$

106. Let $${P_r}\left( {{x_r},\,{y_r},\,{z_r}} \right);\,r = 1,\,2,\,3;$$      be three points where $${x_1},\,{x_2},\,{x_3};\,{y_1},\,{y_2},\,{y_3}$$     and $${z_1},\,{z_2},\,{z_3}$$   are each in GP with the same common ratio. Then $${P_1},\,{P_2},\,{P_3}$$   are :

A coplanar points
B collinear points
C vertices of an equilateral triangle
D none of these
Answer :   collinear points

107. If $$\overrightarrow a .\overrightarrow i = \overrightarrow a .\left( {\overrightarrow i + \overrightarrow j } \right) = \overrightarrow a .\left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right) = 1$$          then $$\overrightarrow a $$ is :

A $$\overrightarrow i - \overrightarrow j $$
B $$\overrightarrow i $$
C $$\overrightarrow j $$
D $$\overrightarrow k $$
Answer :   $$\overrightarrow i $$

108. $$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right),\,\overrightarrow b \times \left( {\overrightarrow c \times \overrightarrow a } \right)$$       and $$\overrightarrow c \times \left( {\overrightarrow a \times \overrightarrow b } \right)$$    are :

A linearly dependent
B equal vectors
C parallel vectors
D none of these
Answer :   linearly dependent

109. Let $$a,\,b,\,c$$   be three distinct positive real numbers. If $$\overrightarrow p ,\,\overrightarrow q ,\,\overrightarrow r $$    lie in a plane, where $$\overrightarrow p = a\overrightarrow i - a\overrightarrow j + b\overrightarrow k ,\,\overrightarrow q = \overrightarrow i + \overrightarrow k $$       and $$\overrightarrow r = c\overrightarrow i + c\overrightarrow j + b\overrightarrow k ,$$     then $$b$$ is :

A the AM of $$a,\,c$$
B the GM of $$a,\,c$$
C the HM of $$a,\,c$$
D equal to $$0$$
Answer :   the HM of $$a,\,c$$

110. If $$\overrightarrow a = \overrightarrow i + \overrightarrow j ,\,\overrightarrow b = 2\overrightarrow j - \overrightarrow k $$     and $$\overrightarrow r \times \overrightarrow a = \overrightarrow b \times \overrightarrow a ,\,\overrightarrow r \times \overrightarrow b = \overrightarrow a \times \overrightarrow b $$       then $$\frac{{\overrightarrow r }}{{\left| {\overrightarrow r } \right|}}$$ is equal to :

A $$\frac{1}{{\sqrt {11} }}\left( {\overrightarrow i + 3\overrightarrow j - \overrightarrow k } \right)$$
B $$\frac{1}{{\sqrt {11} }}\left( {\overrightarrow i - 3\overrightarrow j + \overrightarrow k } \right)$$
C $$\frac{1}{{\sqrt 3 }}\left( {\overrightarrow i - \overrightarrow j + \overrightarrow k } \right)$$
D none of these
Answer :   $$\frac{1}{{\sqrt {11} }}\left( {\overrightarrow i + 3\overrightarrow j - \overrightarrow k } \right)$$