3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

131. Let $$\vec a,\,\vec b,\,\vec c$$   be three non-coplanar vectors and $$\vec p,\,\vec q,\,\vec r$$   are vectors defined by the relations $$\vec p = \frac{{\vec b \times \vec c}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}},\,\vec q = \frac{{\vec c \times \vec a}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}},\,\,\vec r = \frac{{\vec a \times \vec b}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}}$$        then the value of the expression $$\left( {\vec a + \vec b} \right).\vec p + \left( {\vec b + \vec c} \right).\vec q + \left( {\vec c + \vec a} \right).\vec r$$        is equal to :

A $$0$$
B $$1$$
C $$2$$
D $$3$$
Answer :   $$3$$

132. If non zero numbers $$a,\,b,\,c$$  are in H.P., then the straight line $$\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$$    always passes through a fixed point. That point is :

A $$\left( { - 1,\,2} \right)$$
B $$\left( { - 1,\, - 2} \right)$$
C $$\left( {1,\, - 2} \right)$$
D $$\left( {1,\, - \frac{1}{2}} \right)$$
Answer :   $$\left( {1,\, - 2} \right)$$

133. Let $$\overrightarrow p ,\,\overrightarrow q ,\,\overrightarrow r $$   be three mutually perpendicular vectors of the same magnitude. If a vector $$\overrightarrow x $$ satisfies the equation $$\overrightarrow p \times \left\{ {\left( {\overrightarrow x - \overrightarrow q } \right) \times \overrightarrow p } \right\} + \overrightarrow q \times \left\{ {\left( {\overrightarrow x - \overrightarrow r } \right) \times \overrightarrow q } \right\} + \overrightarrow r \left\{ {\left( {\overrightarrow x - \overrightarrow p } \right) \times \overrightarrow r } \right\} = \overrightarrow 0 $$                then $$\overrightarrow x $$ is given by :

A $$\frac{1}{2}\left( {\overrightarrow p + \overrightarrow q - 2\overrightarrow r } \right)$$
B $$\frac{1}{2}\left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$
C $$\frac{1}{3}\left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$
D $$\frac{1}{3}\left( {2\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$
Answer :   $$\frac{1}{2}\left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$

134. If $$\overrightarrow a = 2\hat i + 2\hat j + 3\hat k,\,\overrightarrow b = - \hat i + 2\hat j + \hat k$$        and $$\overrightarrow c = 3\hat i + \hat j$$   are three vectors such that $$\overrightarrow a + t\overrightarrow b $$   is perpendicular to $$\overrightarrow c ,$$ then what is $$t$$ equal to ?

A 8
B 6
C 4
D 2
Answer :   8

135. If $$\vec a$$ and $$\vec b$$ are two unit vectors such that $$\vec a + 2\vec b$$  and $$5\vec a - 4\vec b$$  are perpendicular to each other then the angle between $$\vec a$$ and $$\vec b$$ is :

A $${45^ \circ }$$
B $${60^ \circ }$$
C $${\cos ^{ - 1}}\left( {\frac{1}{3}} \right)$$
D $${\cos ^{ - 1}}\left( {\frac{2}{7}} \right)$$
Answer :   $${60^ \circ }$$

136. If $$ABCDEF$$    is a regular hexagon and $$\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} = k\overrightarrow {AD} ,$$         then find the value of $$k.$$

A $$2$$
B $$3$$
C $$4$$
D $$5$$
Answer :   $$3$$

137. If $$\overrightarrow a = \hat i + 2\hat j - 3\hat k$$    and $$\overrightarrow b = 3\hat i - \hat j + \lambda \hat k,$$    and $$\left( {\overrightarrow a + \overrightarrow b } \right)$$   is perpendicular to $$\left( {\overrightarrow a - \overrightarrow b } \right),$$   then what is the value of $$\lambda \,?$$

A $$ - 2$$  only
B $$ \pm 2$$
C $$3$$ only
D $$ \pm 3$$
Answer :   $$ \pm 2$$

138. $$\hat i \times \left( {\overrightarrow A \times \hat i} \right) + \hat j \times \left( {\overrightarrow A \times \hat j} \right) + \hat k \times \left( {\overrightarrow A \times \hat k} \right){\text{ is equal to :}}$$

A $$\overrightarrow A $$
B $$2\overrightarrow A $$
C $$3\overrightarrow A $$
D $$0$$
Answer :   $$2\overrightarrow A $$

139. If $$\vec a,\,\vec b$$  and $$\vec c$$ are unit coplanar vectors, then the scalar triple product $$\left[ {2\vec a - \vec b,\,2\vec b - \vec c,\,2\vec c - \vec a} \right] = ?$$

A $$0$$
B $$1$$
C $$ - \sqrt 3 $$
D $$\sqrt 3 $$
Answer :   $$0$$

140. Let $$a = 2i + j - 2k$$    and $$b = i + j.$$   If $$c$$ is a vector such that $$a.\,\,c = \left| c \right|,\,\,\left| {c - a} \right| = 2\sqrt 2 $$      and the angle between $$\left( {a \times b} \right)$$  and $$c$$ is $${30^ \circ },$$  then $$\left| {\left( {a \times b} \right) \times c} \right| = ?$$

A $$\frac{2}{3}$$
B $$\frac{3}{2}$$
C $$2$$
D $$3$$
Answer :   $$\frac{3}{2}$$