3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
161.
The vectors $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ and $$\overrightarrow d $$ are such that $$\overrightarrow a \times \overrightarrow b = \overrightarrow c \times \overrightarrow d $$ and $$\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow d .$$ Which of the following is/are correct ?
$$\eqalign{
& 1.\,\left( {\overrightarrow a - \overrightarrow d } \right) \times \left( {\overrightarrow b - \overrightarrow c } \right) = \overrightarrow 0 \cr
& 2.\,\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) = \overrightarrow 0 \cr} $$
Select the correct answer using the code given below :
A
$$1$$ only
B
$$2$$ only
C
Both $$1$$ and $$2$$
D
Neither $$1$$ nor $$2$$
Answer :
Both $$1$$ and $$2$$
$$\eqalign{
& \left( {\overrightarrow a - \overrightarrow d } \right) \times \left( {\overrightarrow b - \overrightarrow c } \right) \cr
& = \overrightarrow a \times \overrightarrow b - \overrightarrow d \times \overrightarrow b - \overrightarrow a \times \overrightarrow c + \overrightarrow d \times \overrightarrow c \cr
& = \overrightarrow c \times \overrightarrow d - \overrightarrow d \times \overrightarrow b - \overrightarrow b \times \overrightarrow d - \overrightarrow c \times \overrightarrow d \cr
& = - \overrightarrow d \times \overrightarrow b + \overrightarrow d \times \overrightarrow b \cr
& = 0 \cr
& {\text{Again }}\left( {\overrightarrow a \times \overrightarrow b } \right) = \left( {\overrightarrow c \times \overrightarrow d } \right){\text{ given}} \cr
& \Rightarrow \left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) = \left( {\overrightarrow c \times \overrightarrow d } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) = 0\,\,\,\,\,\left( {{\text{as }}\overrightarrow a \times \overrightarrow a = 0} \right) \cr} $$
So both $$\left( 1 \right)$$ and $$\left( 2 \right)$$ are correct.
162.
$$P$$ is a point on the $$y$$–$$z$$ plane, making equal angles with the $$y$$-axis and $$z$$-axis and at a distance $$2$$ from the origin. $$M$$ is the foot of the perpendicular from $$P$$ to the plane $$3x + y - \sqrt 2 z = 2\sqrt 2 .$$ The coordinates of $$M$$ are :
A
$$\left( {1,\,\frac{5}{3},\,\frac{{\sqrt 2 }}{3}} \right)$$
B
$$\left( {1,\, - 3,\, - 2} \right)$$
C
$$\left( {\frac{1}{{\sqrt 2 }},\,\frac{5}{{3\sqrt 2 }},\,\frac{1}{3}} \right)$$
163.
If the points $$A\left( {1,\,2,\, - 1} \right),\,B\left( {2,\,6,\,2} \right)$$ and $$C\left( {\lambda ,\, - 2,\, - 4} \right)$$ are collinear then $$\lambda $$ is :
A
$$0$$
B
$$2$$
C
$$ - 2$$
D
$$1$$
Answer :
$$0$$
Direction ratios of the line $$AB$$ are $$2 - 1,\,6 - 2,\,2 - \left( { - 1} \right),$$ i.e., $$1,\,4,\,3.$$ Direction ratios of the line $$AC$$ are $$\lambda - 1,\, - 2 - 2,\, - 4 - \left( { - 1} \right),$$ i.e., $$\lambda - 1,\, - 4,\, - 3.$$ For collinearity, $$AB||AC\,\,\,\,\, \Rightarrow \frac{{\lambda - 1}}{1} = \frac{{ - 4}}{4} = \frac{{ - 3}}{3}\,\,\,\,\, \Rightarrow \lambda = 0.$$
164.
If $$\left( {\vec a \times \vec b} \right) \times \vec c = \vec a \times \left( {\vec b \times \vec c} \right)$$ where $$\vec a,\,\vec b$$ and $${\vec c}$$ are any three vectors such that $$\vec a.\vec b \ne 0,\,\vec b.\vec c \ne 0$$ then $${\vec a}$$ and $${\vec c}$$ are :
A
inclined at an angle of $$\frac{\pi }{3}$$ between them
B
inclined at an angle of $$\frac{\pi }{6}$$ between them
C
perpendicular
D
parallel
Answer :
parallel
$$\eqalign{
& \left( {\vec a \times \vec b} \right) \times \vec c = \vec a \times \left( {\vec b \times \vec c} \right),\,\,\,\,\,\vec a.\vec b \ne 0,\,\,\,\vec b.\vec c \ne 0 \cr
& \Rightarrow \left( {\vec a.\vec c} \right).\vec b - \left( {\vec b.\vec c} \right).\vec a = \left( {\vec a.\vec c} \right).\vec b - \left( {\vec a.\vec b} \right).\vec c \cr
& \Rightarrow \left( {\vec a.\vec b} \right).\vec c = \left( {\vec b.\vec c} \right).\vec a \cr
& \Rightarrow \vec a\,||\,\vec c \cr} $$
165.
Let $$a,\,b,\,c$$ be distinct non-negative numbers. If the vectors $$a\hat i + a\hat j + c\hat k,\,\hat i + \hat k$$ and $$c\hat i + c\hat j + b\hat k$$ lie in a plane, then $$c$$ is :
A
the Arithmetic Mean of $$a$$ and $$b$$
B
the Geometric Mean of $$a$$ and $$b$$
C
the harmonic Mean of $$a$$ and $$b$$
D
equal to zero
Answer :
the Geometric Mean of $$a$$ and $$b$$
$$a,\,b,\,c$$ are distinct non negative numbers and the vectors $$a\hat i + a\hat j + c\hat k,\,\hat i + \hat k$$ and $$c\hat i + c\hat j + b\hat k$$ are coplanar.
\[\therefore \left| \begin{array}{l}
a\,\,\,\,a\,\,\,\,c\\
1\,\,\,\,0\,\,\,\,1\\
c\,\,\,\,c\,\,\,\,b
\end{array} \right| = 0 \Rightarrow \left| \begin{array}{l}
a\,\,\,\,a\,\,\,\,c - a\\
1\,\,\,\,0\,\,\,\,\,\,\,0\\
c\,\,\,\,c\,\,\,\,b - c
\end{array} \right|\]
Operating $${C_3} \to {C_3} - {C_1}$$
Expanding along $${R_2},$$ we get
\[ - \left| \begin{array}{l}
a\,\,\,\,c - a\\
c\,\,\,\,b - c
\end{array} \right| = c\left( {c - a} \right) - a\left( {b - c} \right) = 0\]
$$\eqalign{
& \Rightarrow {c^2} - ac - ab + ac = 0 \cr
& \Rightarrow {c^2} = ab \Rightarrow a,\,c,\,b\,\,{\text{are in G}}{\text{.P}}{\text{.}} \cr} $$
$$\therefore \,\,c$$ is the Geometric Mean of $$a$$ and $$b.$$
166.
Let $$\overrightarrow {OA} = \overrightarrow a ,\,\overrightarrow {OB} = 10\overrightarrow a + 2\overrightarrow b $$ and $$\overrightarrow {OC} = \overrightarrow b ,$$ where $$O,\,A$$ and $$C$$ are noncollinear points. Let $$p$$ denote the area of the quadrilateral $$OABC,$$ and $$q$$ denote the area of the parallelogram with $$OA$$ and $$OC$$ as adjacent sides. Then $$\frac{p}{q}$$ is equal to :
A
$$4$$
B
$$6$$
C
$$\frac{1}{2}\frac{{\left| {\overrightarrow a - \overrightarrow b } \right|}}{{\left| {\overrightarrow a } \right|}}$$
D
none of these
Answer :
$$6$$
$$\eqalign{
& {\text{Here }}\left| {\overrightarrow a \times \overrightarrow b } \right| = q{\text{ and}} \cr
& \frac{1}{2}\left| {\overrightarrow b \times \left( {10\overrightarrow a + 2\overrightarrow b } \right)} \right| + {\text{ }}\frac{1}{2}\left| {\overrightarrow a \times \left( {10\overrightarrow a + 2\overrightarrow b } \right)} \right| = p \cr
& \therefore \,5\left| {\overrightarrow b \times \overrightarrow a } \right| + \left| {\overrightarrow a \times \overrightarrow b } \right| = p \cr
& {\text{or }}6q = p\,\,\,\,\,\,\,\,\,\therefore \,\,\frac{p}{q} = 6. \cr} $$
167.
If $${\hat u}$$ and $${\hat v}$$ are unit vectors and $$\theta $$ is the acute angle between them, then $$2\hat u \times 3\hat v$$ is a unit vector for :
A
no value of $$\theta $$
B
exactly one value of $$\theta $$
C
exactly two values of $$\theta $$
D
more than two values of $$\theta $$
Answer :
exactly one value of $$\theta $$
Given $$\left| {2\hat u \times 3\hat v} \right| = 1$$ and $$\theta $$ is acute angle between $${\hat u}$$ and $$\hat v,\,\,\left| {\hat u} \right| = 1,\,\,\left| {\hat v} \right| = 1$$
$$\eqalign{
& \Rightarrow 6\,\left| {\hat u} \right|\,\left| {\hat v} \right|\left| {\sin \,\theta } \right| = 1 \cr
& \Rightarrow 6\left| {\sin \,\theta } \right| = 1 \cr
& \Rightarrow \sin \,\theta = \frac{1}{6} \cr} $$
Hence, there is exactly one value of $$\theta $$ for which $$2\hat u \times 3\hat v$$ is a unit vector.
168.
If $$a,\,b,\,c$$ are the $${p^{th}},\,{q^{th}},\,{r^{th}}$$ terms of an HP and $$\overrightarrow u = \left( {q - r} \right)\overrightarrow i + \left( {r - p} \right)\overrightarrow j + \left( {p - q} \right)\overrightarrow k ,\,\overrightarrow v = \frac{{\overrightarrow i }}{a} + \frac{{\overrightarrow j }}{b} + \frac{{\overrightarrow k }}{c},$$ then :
A
$$\overrightarrow u ,\,\overrightarrow v $$ are parallel vectors
B
$$\overrightarrow u ,\,\overrightarrow v $$ are orthogonal vectors
C
$$\overrightarrow u .\overrightarrow v = 1$$
D
$$\overrightarrow u \times \overrightarrow v = \overrightarrow i + \overrightarrow j + \overrightarrow k $$
Answer :
$$\overrightarrow u ,\,\overrightarrow v $$ are orthogonal vectors
$$\overrightarrow u .\overrightarrow v = \frac{{q - r}}{a} + \frac{{r - p}}{b} + \frac{{p - q}}{c}.....(1)$$
From the question, $$\frac{1}{a} = x + \left( {p - 1} \right)y,\,\frac{1}{b} = x + \left( {q - 1} \right)y,\,\frac{1}{c} = x + \left( {r - 1} \right)y$$
Putting these in $$(1)$$ and simplifying, $$\overrightarrow u .\overrightarrow v = 0$$
Clearly, $$\left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right).\overrightarrow v = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ne 0.$$ So, $$\overrightarrow u \times \overrightarrow v \ne \overrightarrow i + \overrightarrow j + \overrightarrow k $$
169.
A vector $$\overrightarrow a = \left( {x,\,y,\,z} \right)$$ of length $$2\sqrt 3 $$ which makes equal angles with the vectors $$\overrightarrow b = \left( {y,\, - 2z,\,3x} \right)$$ and $$\overrightarrow c = \left( {2z,\,3x,\, - y} \right)$$ and is perpendicular to $$\overrightarrow d = \left( {1,\, - 1,\,2} \right)$$ and makes an obtuse angle with $$y$$-axis is :
A
$$\left( { - 2,\,2,\,2} \right)$$
B
$$\left( {1,\,1,\,\sqrt {10} } \right)$$
C
$$\left( {2,\, - 2,\, - 2} \right)$$
D
none of these
Answer :
$$\left( {2,\, - 2,\, - 2} \right)$$
Since, $$\overrightarrow a $$ is $$ \bot $$ to $$\overrightarrow d ,$$ so $$x - y + 2z = 0......\left( 1 \right)$$
Moreover, $$\left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right|,$$ so $$\overrightarrow a .\overrightarrow b = \overrightarrow a .\overrightarrow c $$
as $$\overrightarrow a $$ makes equal angles with $$\overrightarrow b $$ and $$\overrightarrow c .$$ Thus
$$\eqalign{
& xy - 2yz + 3xz = 2xz + 3xy - yz \cr
& \Rightarrow xz - 2xy - yz = 0......\left( 2 \right) \cr
& {\text{Also, }}{x^2} + {y^2} + {z^2} = 12......\left( 3 \right) \cr
& {\text{and }}y < 0 \cr} $$
Put the value of $$y$$ from equation $$\left( 1 \right)$$ in equation $$\left( 2 \right),$$
we get, $${x^2} + 2xz + {z^2} = 0\,;$$
So, $$x = - z{\text{ and }}y = z$$
Again put these values in equation $$\left( 3 \right),$$
we get $${z^2} = 4 \Rightarrow z = \pm 2$$
But $$y < 0$$ and $$y = z$$
Hence, $$z = - 2 = y{\text{ and }}x = 2$$
170.
The projection of the vector $$\overrightarrow i + \overrightarrow j + \overrightarrow k $$ on the line whose vector equation is $$\overrightarrow r = \left( {3 + t} \right)\overrightarrow i + \left( {2t - 1} \right)\overrightarrow j + 3t\overrightarrow k ,\,t$$ being the scalar parameter, is :
A
$$\frac{1}{{\sqrt {14} }}$$
B
$$6$$
C
$$\frac{6}{{\sqrt {14} }}$$
D
none of these
Answer :
$$\frac{6}{{\sqrt {14} }}$$
$$\overrightarrow r = 3\overrightarrow i - \overrightarrow j + t\left( {\overrightarrow i + 2\overrightarrow j + 3\overrightarrow k } \right).$$ So, a vector parallel to the line is $$\overrightarrow b = \overrightarrow i + 2\overrightarrow j + 3\overrightarrow k $$
$$\therefore $$ unit vector along the line is $$\frac{{\overrightarrow i + 2\overrightarrow j + 3\overrightarrow k }}{{\sqrt {{1^2} + {2^2} + {3^2}} }},\,{\text{i}}{\text{.e}}{\text{., }}\frac{{\overrightarrow i + 2\overrightarrow j + 3\overrightarrow k }}{{\sqrt {14} }}$$
$$\therefore $$ the projection $$ = \left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right).\frac{{\overrightarrow i + 2\overrightarrow j + 3\overrightarrow k }}{{\sqrt {14} }} = \frac{{1 + 2 + 3}}{{\sqrt {14} }} = \frac{6}{{\sqrt {14} }}.$$