3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
181.
The number of distinct real values of $$\lambda ,$$ for which the vectors $$ - {\lambda ^2}\hat i + \hat j + \hat k,\,\hat i - {\lambda ^2}\hat j + \hat k$$ and $$\hat i + \hat j - {\lambda ^2}\hat k$$ are coplanar, is :
182.
Let $${\vec a}$$ and $${\vec b}$$ be two unit vectors. If the vectors $$\vec c = \hat a + 2\hat b$$ and $$\vec d = 5\hat a - 4\hat b$$ are perpendicular to each other, then the angle between $${\hat a}$$ and $${\hat b}$$ is :
A
$$\frac{\pi }{6}$$
B
$$\frac{\pi }{2}$$
C
$$\frac{\pi }{3}$$
D
$$\frac{\pi }{4}$$
Answer :
$$\frac{\pi }{3}$$
Let $$\vec c = \hat a + 2\hat b$$ and $$\vec d = 5\hat a - 4\hat b$$
Since $${\vec c}$$ and $${\vec d}$$ are perpendicular to each other
$$\eqalign{
& \therefore \,\,\,\vec c.\vec d = 0\, \cr
& \Rightarrow \left( {\hat a + 2\hat b} \right).\left( {5\hat a - 4\hat b} \right) = 0 \cr
& \Rightarrow 5 + 6\hat a.\hat b - 8 = 0\,\,\,\,\,\,\,\,\,\left( {\because \hat a.\hat a = 1} \right) \cr
& \Rightarrow \hat a.\hat b = \frac{1}{2} \cr
& \Rightarrow \theta = \frac{\pi }{3} \cr} $$
183.
Let $$\vec u,\,\vec v$$ and $$\vec w$$ be vectors such that $$\vec u + \vec v + \vec w = 0.$$ If $$\left| {\vec u} \right| = 3,\,\left| {\vec v} \right| = 4$$ and $$\left| {\vec w} \right| = 5,$$ then $$\vec u.\vec v + \vec v.\vec w + \,\vec w.\vec u$$ is :
A
$$47$$
B
$$ - 25$$
C
$$0$$
D
$$25$$
Answer :
$$ - 25$$
$$\eqalign{
& \because \vec u + \vec v + \vec w = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\therefore {\left| {\vec u + \vec v + \vec w} \right|^2} = 0 \cr
& \Rightarrow {\left| {\vec u} \right|^2} + \,{\left| {\vec v} \right|^2} + \,{\left| {\vec w} \right|^2} + 2\left( {\vec u.\vec v + \vec v.\vec w + \,\vec w.\vec u} \right) = 0 \cr
& \Rightarrow 9 + 16 + 25 + 2\left( {\vec u.\vec v + \vec v.\vec w + \,\vec w.\vec u} \right) = 0 \cr
& \Rightarrow \left( {\vec u.\vec v + \vec v.\vec w + \,\vec w.\vec u} \right) = - 25 \cr} $$
184.
The vector $$\overrightarrow c $$ directed along the bisectors of the angle between the vectors $$\overrightarrow a = 7\hat i - 4\hat j - 4\hat k,\,\overrightarrow b = - 2\hat i - \hat j + 2\hat k$$ and $$\left| {\overrightarrow c } \right| = 3\sqrt 6 $$ is given by :
A
$$\hat i - 7\hat j + 2\hat k$$
B
$$\hat i + 7\hat j - 2\hat k$$
C
$$\hat i + 7\hat j + 2\hat k$$
D
$$\hat i + 7\hat j + 3\hat k$$
Answer :
$$\hat i - 7\hat j + 2\hat k$$
$$\eqalign{
& OQ = PQ = \lambda \,\,\,\left( {{\text{say}}} \right)\,; \cr
& \overrightarrow {OP} = \overrightarrow {OQ} + \overrightarrow {QP} \,;\,\overrightarrow c = \lambda \hat a + \lambda \hat b \cr} $$
Let $${\hat a}$$ and $${\hat b}$$ be unit vectors along $$\overrightarrow a $$ and $$\overrightarrow b $$ respectively,
then, $$\hat a = \frac{1}{9}\left( {7\hat i - 4\hat j - 4\hat k} \right)$$ and $$\hat b = \frac{1}{3}\left( { - 2\hat i - \hat j + 2\hat k} \right)$$
The required vector
$$\overrightarrow c = \lambda \left( {\hat a + \hat b} \right),$$ where $$\lambda $$ is a scalar
$$\eqalign{
& \Rightarrow \overrightarrow c = \lambda \left( {\frac{1}{9}\hat i - \frac{7}{9}\hat j + \frac{2}{9}\hat k} \right) \cr
& \Rightarrow {\left| {\overrightarrow c } \right|^2} = {\lambda ^2}\left( {\frac{1}{{81}} + \frac{{49}}{{81}} + \frac{4}{{81}}} \right) \cr
& \Rightarrow {\left| {\overrightarrow c } \right|^2} = \frac{{54}}{{81}}{\lambda ^2} \cr
& \Rightarrow {\left( {3\sqrt 6 } \right)^2} = \frac{{54}}{{81}}{\lambda ^2} \cr
& \Rightarrow {\lambda ^2} = 81 \cr
& \Rightarrow \lambda = \pm 9 \cr} $$
Hence, $$\overrightarrow c = \left( {\hat i - 7\hat j + 2\hat k} \right)$$
185.Statement-1: The point $$A\left( {1,\,0,\,7} \right)$$ is the mirror image of the point $$B\left( {1,\,6,\,3} \right)$$ in thel ine : $$\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{3}$$ Statement-2: The line $$\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{3}$$ bisects the line segment joining $$A\left( {1,\,0,\,7} \right)$$ and $$B\left( {1,\,6,\,3} \right)$$
A
Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
B
Statement-1 is true, Statement-2 is false.
C
Statement-1 is false, Statement-2 is true.
D
Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
Answer :
Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
The direction ratios of the line segment joining points $$A\left( {1,\,0,\,7} \right)$$ and $$B\left( {1,\,6,\,3} \right)$$ are $$0,\,6,\,-4.$$
The direction ratios of the given line are 1, 2, 3.
Clearly $$1 \times 0 + 2 \times 6 + 3 \times \left( { - 4} \right) = 0$$
So, the given line is perpendicular to line $$AB.$$
Also , the mid point of $$A$$ and $$B$$ is (1, 3, 5) which lies on the given line.
So, the image of $$B$$ in the given line is $$A,$$ because the given line is the perpendicular bisector of line segment joining points $$A$$ and $$B.$$ But statement-2 is not a correct explanation for statement-1.
186.
$$ABCD$$ a parallelogram, and $${A_1}$$ and $${B_1}$$ are the
midpoints of sides $$BC$$ and $$CD,$$ respectively. If $$\overrightarrow {A{A_1}} + \overrightarrow {A{B_1}} = \lambda \overrightarrow {AC} ,$$ then $$\lambda $$ is equal to :
A
$$\frac{1}{2}$$
B
$$1$$
C
$$\frac{3}{2}$$
D
$$2$$
Answer :
$$\frac{3}{2}$$
Let P.V. of
$$A,\,B$$ and $$D$$ be $$\overrightarrow 0 ,\,\overrightarrow b $$ and $$\overrightarrow d ,$$ respectively.
Then P.V. of $$C,$$
$$\overrightarrow c = \overrightarrow b + \overrightarrow d $$
Also P.V. of $${A_1} = \overrightarrow b + \frac{{\overrightarrow d }}{2}$$
and P.V. of $${B_1} = \overrightarrow d + \frac{{\overrightarrow b }}{2}$$
$$ \Rightarrow \overrightarrow {A{A_1}} + \overrightarrow {A{B_1}} = \frac{3}{2}\left( {\overrightarrow b + \overrightarrow d } \right) = \frac{3}{2}\overrightarrow {AC} $$
187.
Which one of the following is the unit vector perpendicular to both $$\overrightarrow a = - \hat i + \hat j + \hat k$$ and $$\overrightarrow b = \hat i - \hat j + \hat k\,?$$
188.
Let $$\vec a = 2\hat i + \hat j - 2\hat k$$ and $$\vec b = \hat i + \hat j.$$ Let $${\vec c}$$ be a vector such that $$\left| {\vec c - \vec a} \right| = 3,\,\left| {\left( {\vec a \times \vec b} \right) \times \vec c} \right| = 3$$ and the angle between $${\vec c}$$ and $$\vec a \times \vec b$$ be $${30^ \circ }.$$ Then $$\vec a.\vec c$$ is equal to :
A
$$\frac{1}{8}$$
B
$$\frac{{25}}{8}$$
C
$$2$$
D
$$5$$
Answer :
$$2$$
Given :
$$\eqalign{
& \vec a = 2\hat i + \hat j - 2\hat k,\,\vec b = \hat i + \hat j \cr
& \Rightarrow \left| {\vec a} \right| = 3 \cr
& \therefore \,\vec a \times \vec b = 2\hat i - 2\hat j + \hat k \cr
& \left| {\vec a \times \vec b} \right| = \sqrt {{2^2} + {2^2} + {1^2}} = 3 \cr} $$
We have $$\left| {\left( {\vec a \times \vec b} \right) \times \vec c} \right| = \left| {\vec a \times \vec b} \right|\left| {\vec c} \right|\,\sin \,{30^ \circ }$$
$$\eqalign{
& \Rightarrow \left| {\left( {\vec a \times \vec b} \right) \times \vec c} \right| = 3\left| {\vec c} \right|.\frac{1}{2} \cr
& \Rightarrow 3 = 3\left| {\vec c} \right|.\frac{1}{2} \cr
& \therefore \left| {\vec c} \right| = 2 \cr} $$
Now $$\left| {\vec c - \vec a} \right| = 3$$
On squaring, we get
$$\eqalign{
& \Rightarrow {c^2} + {a^2} - 2\vec c.\vec a = 9 \cr
& \Rightarrow 4 + 9 - 2\vec a.\vec c = 9 \cr
& \Rightarrow \vec a.\vec c = 2\,\,\,\,\,\,\,\,\,\,\left[ {\because \vec c.\vec a = \vec a.\vec c} \right] \cr} $$
189.
Let $$\overrightarrow A = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k,\,\overrightarrow B = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k$$ and $$\overrightarrow C = {c_1}\hat i + {c_2}\hat j + {c_3}\hat k$$ be three non-zero vectors such that $$\overrightarrow C $$ is a unit vector perpendicular to both the vectors $$\overrightarrow A $$ and $$\overrightarrow B .$$ If the angle between $$\overrightarrow A $$ and $$\overrightarrow B $$ is $$\frac{\pi }{6},$$ then \[{\left| \begin{array}{l}
{a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\
{b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\
{c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3}
\end{array} \right|^2}\] is equal to :
\[\begin{array}{l}
{\left| \begin{array}{l}
{a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\
{b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\
{c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3}
\end{array} \right|^2} = {\left[ {\overrightarrow A \overrightarrow B \overrightarrow C } \right]^2}\\
\Rightarrow \left| \begin{array}{l}
{a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\
{b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\
{c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3}
\end{array} \right| = {\left( {\left( {\overrightarrow A \times \overrightarrow B } \right).\overrightarrow C } \right)^2}\\
\Rightarrow \left| \begin{array}{l}
{a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\
{b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\
{c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3}
\end{array} \right| = {\left\{ {\left| {\overrightarrow A } \right|\,\left| {\overrightarrow B } \right|\sin \frac{\pi }{6}\left( {\overrightarrow C } \right).\overrightarrow C } \right\}^2}\\
\Rightarrow \left| \begin{array}{l}
{a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\
{b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\
{c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3}
\end{array} \right| = {\left| {\overrightarrow A } \right|^2}{\left| {\overrightarrow B } \right|^2}{\left( {\frac{1}{2}} \right)^2}{\left| {\overrightarrow C } \right|^4}\\
\Rightarrow \left| \begin{array}{l}
{a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\
{b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\
{c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3}
\end{array} \right| = \frac{1}{4}{\left| {\overrightarrow A } \right|^2}{\left| {\overrightarrow B } \right|^2}\\
\Rightarrow \left| \begin{array}{l}
{a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\
{b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\
{c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3}
\end{array} \right| = \frac{1}{4}\left( {a_1^2 + a_2^2 + a_3^2} \right)\left( {b_1^2 + b_2^2 + b_3^2} \right)
\end{array}\]
190.
If the lines $$\frac{x}{1} = \frac{y}{2} = \frac{z}{3},\,\frac{{x - 1}}{3} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{4}$$ and $$\frac{{x + k}}{3} = \frac{{y - 1}}{2} = \frac{{z - 2}}{h}$$ are concurrent then :
A
$$h = - 2,\,k = - 6$$
B
$$h = \frac{1}{2},\,k = 2$$
C
$$h = 6,\,k = 2$$
D
$$h = 2,\,k = \frac{1}{2}$$
Answer :
$$h = 2,\,k = \frac{1}{2}$$
Any point on the first line is $$\left( {r,\,2r,\,3r} \right),$$ and any point on the second line is $$\left( {1 + 3r',\,2 - r',\,3 + 4r'} \right).$$ For the point of intersection, $$r = 1 + 3r',\,2r = 2 - r',\,3r = 3 + 4r'\,\,\,\, \Rightarrow r = 1{\text{ and }}r' = 0.$$
So, the point of intersection of the first two lines is $$\left( {1,\,2,\,3} \right).$$ It is on the third line. So, $$\frac{{1 + k}}{3} = \frac{{2 - 1}}{2} = \frac{{3 - 2}}{h}.$$