3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

181. The number of distinct real values of $$\lambda ,$$  for which the vectors $$ - {\lambda ^2}\hat i + \hat j + \hat k,\,\hat i - {\lambda ^2}\hat j + \hat k$$      and $$\hat i + \hat j - {\lambda ^2}\hat k$$   are coplanar, is :

A zero
B one
C two
D three
Answer :   two

182. Let $${\vec a}$$ and $${\vec b}$$ be two unit vectors. If the vectors $$\vec c = \hat a + 2\hat b$$   and $$\vec d = 5\hat a - 4\hat b$$   are perpendicular to each other, then the angle between $${\hat a}$$ and $${\hat b}$$ is :

A $$\frac{\pi }{6}$$
B $$\frac{\pi }{2}$$
C $$\frac{\pi }{3}$$
D $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{3}$$

183. Let $$\vec u,\,\vec v$$  and $$\vec w$$ be vectors such that $$\vec u + \vec v + \vec w = 0.$$   If $$\left| {\vec u} \right| = 3,\,\left| {\vec v} \right| = 4$$    and $$\left| {\vec w} \right| = 5,$$   then $$\vec u.\vec v + \vec v.\vec w + \,\vec w.\vec u$$     is :

A $$47$$
B $$ - 25$$
C $$0$$
D $$25$$
Answer :   $$ - 25$$

184. The vector $$\overrightarrow c $$ directed along the bisectors of the angle between the vectors $$\overrightarrow a = 7\hat i - 4\hat j - 4\hat k,\,\overrightarrow b = - 2\hat i - \hat j + 2\hat k$$        and $$\left| {\overrightarrow c } \right| = 3\sqrt 6 $$   is given by :

A $$\hat i - 7\hat j + 2\hat k$$
B $$\hat i + 7\hat j - 2\hat k$$
C $$\hat i + 7\hat j + 2\hat k$$
D $$\hat i + 7\hat j + 3\hat k$$
Answer :   $$\hat i - 7\hat j + 2\hat k$$

185. Statement-1: The point $$A\left( {1,\,0,\,7} \right)$$   is the mirror image of the point $$B\left( {1,\,6,\,3} \right)$$   in thel ine : $$\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{3}$$
Statement-2: The line $$\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{3}$$     bisects the line segment joining $$A\left( {1,\,0,\,7} \right)$$   and $$B\left( {1,\,6,\,3} \right)$$

A Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
B Statement-1 is true, Statement-2 is false.
C Statement-1 is false, Statement-2 is true.
D Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
Answer :   Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.

186. $$ABCD$$   a parallelogram, and $${A_1}$$ and $${B_1}$$ are the midpoints of sides $$BC$$  and $$CD,$$  respectively. If $$\overrightarrow {A{A_1}} + \overrightarrow {A{B_1}} = \lambda \overrightarrow {AC} ,$$     then $$\lambda $$ is equal to :

A $$\frac{1}{2}$$
B $$1$$
C $$\frac{3}{2}$$
D $$2$$
Answer :   $$\frac{3}{2}$$

187. Which one of the following is the unit vector perpendicular to both $$\overrightarrow a = - \hat i + \hat j + \hat k$$    and $$\overrightarrow b = \hat i - \hat j + \hat k\,?$$

A $$\frac{{\hat i + \hat j}}{{\sqrt 2 }}$$
B $${\hat k}$$
C $$\frac{{\hat j + \hat k}}{{\sqrt 2 }}$$
D $$\frac{{\hat i - \hat j}}{{\sqrt 2 }}$$
Answer :   $$\frac{{\hat i + \hat j}}{{\sqrt 2 }}$$

188. Let $$\vec a = 2\hat i + \hat j - 2\hat k$$    and $$\vec b = \hat i + \hat j.$$   Let $${\vec c}$$ be a vector such that $$\left| {\vec c - \vec a} \right| = 3,\,\left| {\left( {\vec a \times \vec b} \right) \times \vec c} \right| = 3$$      and the angle between $${\vec c}$$ and $$\vec a \times \vec b$$  be $${30^ \circ }.$$  Then $$\vec a.\vec c$$  is equal to :

A $$\frac{1}{8}$$
B $$\frac{{25}}{8}$$
C $$2$$
D $$5$$
Answer :   $$2$$

189. Let $$\overrightarrow A = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k,\,\overrightarrow B = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k$$         and $$\overrightarrow C = {c_1}\hat i + {c_2}\hat j + {c_3}\hat k$$     be three non-zero vectors such that $$\overrightarrow C $$ is a unit vector perpendicular to both the vectors $$\overrightarrow A $$ and $$\overrightarrow B .$$ If the angle between $$\overrightarrow A $$ and $$\overrightarrow B $$ is $$\frac{\pi }{6},$$  then \[{\left| \begin{array}{l} {a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\ {b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\ {c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3} \end{array} \right|^2}\]   is equal to :

A $$0$$
B $$1$$
C $$\frac{1}{4}\left( {a_1^2 + a_2^2 + a_3^2} \right)\left( {b_1^2 + b_2^2 + b_3^2} \right)$$
D $$\frac{3}{4}\left( {a_1^2 + a_2^2 + a_3^2} \right)\left( {b_1^2 + b_2^2 + b_3^2} \right)\left( {c_1^2 + c_2^2 + c_3^2} \right)$$
Answer :   $$\frac{1}{4}\left( {a_1^2 + a_2^2 + a_3^2} \right)\left( {b_1^2 + b_2^2 + b_3^2} \right)$$

190. If the lines $$\frac{x}{1} = \frac{y}{2} = \frac{z}{3},\,\frac{{x - 1}}{3} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{4}$$         and $$\frac{{x + k}}{3} = \frac{{y - 1}}{2} = \frac{{z - 2}}{h}$$      are concurrent then :

A $$h = - 2,\,k = - 6$$
B $$h = \frac{1}{2},\,k = 2$$
C $$h = 6,\,k = 2$$
D $$h = 2,\,k = \frac{1}{2}$$
Answer :   $$h = 2,\,k = \frac{1}{2}$$