3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
191.
let $$\vec a = \hat i - \hat j,\,\vec b = \hat j - \hat k,\,\vec c = \hat k - \hat i.$$ if $${\vec d}$$ is a unit vector such that $$\vec a.\vec d = 0 = \left[ {\vec b\,\vec c\,\vec d} \right],$$ then $${\vec d}$$ equals :
A
$$ \pm \frac{{\hat i + \hat j - 2\hat k}}{{\sqrt 6 }}$$
B
$$ \pm \frac{{\hat i + \hat j - \hat k}}{{\sqrt 3 }}$$
C
$$ \pm \frac{{\hat i + \hat j + \hat k}}{{\sqrt 3 }}$$
$$\eqalign{
& {\text{Let}}\,\,\vec d = x\,\hat i\, + y\,\hat j + z\,\hat k \cr
& {\text{where}}\,\,{x^2} + {y^2} + {z^2}.....(1) \cr
& \left( {\vec d\,\,{\text{being}}\,{\text{unit}}\,{\text{vector}}} \right)\,\,\therefore \vec a.\vec d = 0 \cr
& \Rightarrow x - y = 0\,\,\,\, \Rightarrow x = y.....(2) \cr} $$
\[\left[ {\vec b\,\vec c\,\vec d} \right] = 0 \Rightarrow \left| \begin{array}{l}
\,\,\,\,\,\,0\,\,\,\,1\,\,\,\, - 1\\
- 1\,\,\,\,0\,\,\,\,1 = 0\\
\,\,\,\,\,\,x\,\,\,\,y\,\,\,\,z
\end{array} \right|\]
$$\eqalign{
& \Rightarrow x + y + z = 0 \cr
& \Rightarrow 2x + z = 0\,\,\,\,\,\,\,\,\left( {{\text{using }}\,(2)} \right) \cr
& \Rightarrow z = - 2x.....(3) \cr
& {\text{From (1),}}\,{\text{(2) and (3)}} \cr
& {x^2} + {x^2} + 4{x^2} = 1 \Rightarrow x = \pm \frac{1}{{\sqrt 6 }} \cr
& \therefore d = \pm \left( {\frac{1}{{\sqrt 6 }}\hat i + \frac{1}{{\sqrt 6 }}\hat j - \frac{2}{{\sqrt 6 }}\hat k} \right) = \pm \left( {\frac{{\hat i + \hat j - 2\hat k}}{{\sqrt 6 }}} \right) \cr} $$
192.
If $$\overrightarrow r = 3\overrightarrow i + 2\overrightarrow j - 5\overrightarrow k ,\,\overrightarrow a = 2\overrightarrow i - \overrightarrow j + \overrightarrow k ,\,\overrightarrow b = \overrightarrow i + 3\overrightarrow j - 2\overrightarrow k $$ and $$\overrightarrow c = - 2\overrightarrow i + \overrightarrow j - 3\overrightarrow k $$ such that $$\overrightarrow r = \lambda \overrightarrow a + \mu \overrightarrow b + \nu \overrightarrow c $$ then :
A
$$\mu ,\,\frac{\lambda }{2},\,\nu $$ are in AP
B
$$\lambda ,\,\mu ,\,\nu $$ are in AP
C
$$\lambda ,\,\mu ,\,\nu $$ are in HP
D
$$\mu ,\,\lambda ,\,\nu $$ are in GP
Answer :
$$\mu ,\,\frac{\lambda }{2},\,\nu $$ are in AP
Here,
$$\eqalign{
& 3\overrightarrow i + 2\overrightarrow j - 5\overrightarrow k = \lambda \left( {2\overrightarrow i - \overrightarrow j + \overrightarrow k } \right) + \mu \left( {\overrightarrow i + 3\overrightarrow j - 2\overrightarrow k } \right) + \nu \left( { - 2\overrightarrow i + \overrightarrow j - 3\overrightarrow k } \right) \cr
& \Rightarrow 3 = 2\lambda + \mu - 2\nu ,\,\,2 = - \lambda + 3\mu + \nu ,\,\, - 5 = \lambda - 2\mu - 3\nu \cr} $$
Solving these, $$\mu = 1,\,\nu = 2,\,\lambda = 3.$$ Hence, $$\mu ,\,\frac{\lambda }{2},\,\nu $$ are in AP.
193.
Consider the parallelepiped with side $$\overrightarrow a = 3\hat i + 2\hat j + \hat k,\,\overrightarrow b = \hat i + \hat j + 2\hat k$$ and $$\overrightarrow c = \hat i + 3\hat j + 3\hat k$$ then the angle between $$\overrightarrow a $$ and the plane containing the face determined by $$\overrightarrow b $$ and $$\overrightarrow c $$ is :
A
$${\sin ^{ - 1}}\frac{1}{3}$$
B
$${\cos ^{ - 1}}\frac{9}{{14}}$$
C
$${\sin ^{ - 1}}\frac{9}{{14}}$$
D
$${\sin ^{ - 1}}\frac{2}{3}$$
Answer :
$${\sin ^{ - 1}}\frac{9}{{14}}$$
\[\overrightarrow b \times \overrightarrow c = \left| \begin{array}{l}
\hat i\,\,\,\hat j\,\,\,\hat k\\
1\,\,\,\,1\,\,\,\,2\\
1\,\,\,\,3\,\,\,3
\end{array} \right| = - 3\hat i - \hat j + 2\hat k\]
If $$\theta $$ is the angle between $$\overrightarrow a $$ and the plane containing $$\overrightarrow b $$ and $$\overrightarrow c ,$$ then
$$\eqalign{
& \cos \left( {{{90}^ \circ } - \theta } \right) = \left| {\frac{{\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)}}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow b \times \overrightarrow c } \right|}}} \right| \cr
& \Rightarrow \cos \left( {{{90}^ \circ } - \theta } \right) = \frac{1}{{\sqrt {14} }}.\frac{1}{{\sqrt {14} }}\left| {\left( { - 9 - 2 + 2} \right)} \right| \cr
& \Rightarrow \cos \left( {{{90}^ \circ } - \theta } \right) = \frac{9}{{14}} \cr
& \Rightarrow \sin \,\theta = \frac{9}{{14}} \cr
& \Rightarrow \theta = {\sin ^{ - 1}}\left( {\frac{9}{{14}}} \right) \cr} $$
194.
Constant forces $$\overrightarrow P = \overrightarrow i - 2\overrightarrow j + 3\overrightarrow k ,\,\overrightarrow Q = - \overrightarrow i + 3\overrightarrow j - \overrightarrow k $$ and $$\overrightarrow R = 2\overrightarrow i - 4\overrightarrow j + 3\overrightarrow k $$ act on a particle. The work done when the particle is displaced from a point $$A$$ with position vector $$4\overrightarrow i - 3\overrightarrow j - 2\overrightarrow k $$ to the point $$B$$ with position vector $$6\overrightarrow i + \overrightarrow j - 3\overrightarrow k $$ is :
A
$$15$$
B
$$13$$
C
$$\sqrt {13} $$
D
none of these
Answer :
$$13$$
Work done $$ = \left| {\left( {\overrightarrow P + \overrightarrow Q + \overrightarrow R } \right).\overrightarrow {AB} } \right| = \left| {\left( {2\overrightarrow i - 3\overrightarrow j + 5\overrightarrow k } \right).\left( {2\overrightarrow i + 4\overrightarrow j - \overrightarrow k } \right)} \right| = 13$$
195.
The non-zero vectors are $$\vec a,\,\vec b$$ and $$\vec c$$ are related by $$\vec a = 8\vec b$$ and $$\vec c = - 7\vec b.$$ Then the angle between $${\vec a}$$ and $${\vec c}$$ is :
A
$$0$$
B
$$\frac{\pi }{4}$$
C
$$\frac{\pi }{2}$$
D
$$\pi $$
Answer :
$$\pi $$
Clearly $$\vec a = - \frac{8}{7}\vec c$$
$$ \Rightarrow \vec a\,||\,\vec c$$ and are opposite in direction
$$\therefore $$ Angle between $${\vec a}$$ and $${\vec c}$$ is $$\pi $$
196.
Let $$\overrightarrow a = \overrightarrow i + \overrightarrow j + \overrightarrow k ,\,\overrightarrow c = \overrightarrow j - \overrightarrow k .$$ If $$\overrightarrow b $$ is a vector satisfying $$\overrightarrow a \times \overrightarrow b = \overrightarrow c $$ and $$\overrightarrow a .\overrightarrow b = 3$$ then $$\overrightarrow b $$ is :
A
$$\frac{1}{3}\left( {5\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k } \right)$$
B
$$\frac{1}{3}\left( {5\overrightarrow i - 2\overrightarrow j - 2\overrightarrow k } \right)$$
C
$$3\overrightarrow i - \overrightarrow j - \overrightarrow k $$
D
none of these
Answer :
$$\frac{1}{3}\left( {5\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k } \right)$$
$$\eqalign{
& {\text{Let }}\overrightarrow b = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \cr
& \overrightarrow a .\overrightarrow b = 3\,\,\,\, \Rightarrow x + y + z = 3 \cr
& \overrightarrow a \times \overrightarrow b = \overrightarrow c \,\,\, \Rightarrow \left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right) \times \left( {x\overrightarrow i + y\overrightarrow j + z\overrightarrow k } \right) = \overrightarrow j - \overrightarrow k \cr
& {\text{or }}\left( {z - y} \right)\overrightarrow i + \left( {x - z} \right)\overrightarrow j + \left( {y - x} \right)\overrightarrow k = \overrightarrow j - \overrightarrow k \cr
& \Rightarrow \,z - y = 0,\,x - z = 1,\,y - x = - 1 \cr} $$
Solving the four equations in $$x,\,y,\,z,$$ we get $$x = \frac{5}{3},\,y = \frac{2}{3},\,z = \frac{2}{3}.$$
197.
$$\left[ {\overrightarrow a + \overrightarrow b \,\,\overrightarrow b + \overrightarrow c \,\,\overrightarrow c + \overrightarrow a } \right]$$ is equal to :
A
$$2\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$
B
$$3\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$
C
$$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$
D
$$0$$
Answer :
$$2\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$
$$\eqalign{
& \left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\overrightarrow b + \overrightarrow c } \right) = \overrightarrow a \times \overrightarrow b + \overrightarrow a \times \overrightarrow c + \overrightarrow b \times \overrightarrow c \cr
& \therefore \,\left[ {\overrightarrow a + \overrightarrow b \,\,\overrightarrow b + \overrightarrow c \,\,\overrightarrow c + \overrightarrow a } \right] = \left( {\overrightarrow a \times \overrightarrow b + \overrightarrow a \times \overrightarrow c + \overrightarrow b \times \overrightarrow c } \right).\left( {\overrightarrow c .\overrightarrow a } \right) \cr
& = \left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] + \left[ {\overrightarrow b \,\overrightarrow c \,\overrightarrow a } \right]\left( {\because \,\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] = 0{\text{ if two vectors are equal}}} \right) \cr
& = \left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] + \left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] \cr
& = 2\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] \cr} $$
198.
Let $$\vec a = \hat j - \hat k$$ and $$\vec c = \hat i - \hat j - \,\hat k.$$ Then the vector $${\vec b}$$ satisfying $$\vec a \times \vec b + \vec c = 0$$ and $$\vec a.\vec b = 3$$
A
$$2\hat i - \hat j + 2\hat k$$
B
$$\hat i - \hat j - 2\hat k$$
C
$$\hat i + \hat j - 2\hat k$$
D
$$ - \hat i + \hat j - 2\hat k$$
Answer :
$$ - \hat i + \hat j - 2\hat k$$
$$\eqalign{
& \vec c = \vec b \times \vec a\,\, \Rightarrow \vec b.\vec c = \vec b.\left( {\vec b \times \vec a} \right)\,\, \Rightarrow \vec b.\vec c = 0 \cr
& \Rightarrow \left( {{b_1}\hat i + {b_2}\hat j + {b_3}\hat k} \right).\left( {\hat i - \hat j - \hat k} \right) = 0, \cr
& {\text{where }}\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k \cr
& {b_1} + {b_2} + {b_3} = 0.....({\text{i}}) \cr
& {\text{and }}\vec a.\vec b = 3\,\, \Rightarrow \left( {\hat j - \hat k} \right).\left( {{b_1}\hat i + {b_2}\hat j + {b_3}\hat k} \right) = 3 \cr
& \Rightarrow {b_2} - {b_3} = 3 \cr} $$
From equation (i)
$$\eqalign{
& {b_1} = {b_2} + {b_3} = \left( {3 + {b_3}} \right) + {b_3} = 3 + 2{b_3} \cr
& \vec b = \left( {3 + 2{b_3}} \right)\hat i + \left( {3 + {b_3}} \right)\hat j + {b_3}\hat k \cr} $$
From the option given, it is clear that $${b_3}$$ equal to either 2 or $$-2$$
If $${b_3} = 2,$$ then $$\vec b = 7\hat i + 5\hat j + 2\hat k$$ which is not possible
If $${b_3} = - 2,$$ then $$\vec b = - \hat i + \hat j - 2\hat k$$
199.
If the vectors $$\alpha \hat i + \alpha \hat j + \gamma \hat k,\,\hat i + \hat k$$ and $$\gamma \hat i + \gamma \hat j + \beta \hat k$$ lie on a plane, where $$\alpha ,\,\beta $$ and $$\gamma $$ are distinct non-negative numbers, then $$\gamma $$ is :
A
Arithmetic mean of $$\alpha $$ and $$\beta $$
B
Geometric mean of $$\alpha $$ and $$\beta $$
C
Harmonic mean of $$\alpha $$ and $$\beta $$
D
None of the above
Answer :
Geometric mean of $$\alpha $$ and $$\beta $$
200.
If $$\overrightarrow {{r_1}} ,\,\overrightarrow {{r_2}} ,\,\overrightarrow {{r_3}} $$ are the position vectors of three collinear points and scalars $$m$$ and $$n$$ exist such that $$\overrightarrow {{r_3}} = m\overrightarrow {{r_1}} + n\overrightarrow {{r_2}} ,$$ then what is the value of $$\left( {m + n} \right)\,?$$
A
$$0$$
B
$$1$$
C
$$ - 1$$
D
$$2$$
Answer :
$$1$$
Since $$\overrightarrow {{r_1}} ,\,\overrightarrow {{r_2}} $$ and $$\overrightarrow {{r_3}} $$ are the position vector of three collinear points. Thus, $$\overrightarrow {{r_3}} $$ is the position vector of the point which divides the joining of points whose position vectors are $$\overrightarrow {{r_1}} $$ and $$\overrightarrow {{r_2}} $$ in the ratio $$m : n.$$
$$\eqalign{
& {\text{So, }}\overrightarrow {{r_3}} = \frac{{m\overrightarrow {{r_1}} + n\overrightarrow {{r_2}} }}{{m + n}} \cr
& {\text{But as given, }}\overrightarrow {{r_3}} = m\overrightarrow {{r_1}} + n\overrightarrow {{r_2}} \cr
& {\text{So, }}\frac{{\overrightarrow {m{r_1}} + \overrightarrow {n{r_2}} }}{{m + n}} = m{r_1} + n{r_2} \cr
& \Rightarrow m + n = 1 \cr} $$