3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

211. If $$\overrightarrow {OA} = \overrightarrow a \,;\,\overrightarrow {OB} = \overrightarrow b \,;\,\overrightarrow {OC} = 2\overrightarrow a + 3\overrightarrow b \,;\,\overrightarrow {OD} = \overrightarrow a - 2\overrightarrow b ,$$           the length of $$\overrightarrow {OA} $$  is three times the length of $$\overrightarrow {OB} $$  and $$\overrightarrow {OA} $$  is perpendicular to $$\overrightarrow {DB} $$  then $$\left( {\overrightarrow {BD} \times \overrightarrow {AC} } \right).\left( {\overrightarrow {OD} \times \overrightarrow {OC} } \right){\text{ is :}}$$

A $$7{\left| {\overrightarrow a \times \overrightarrow b } \right|^2}$$
B $$42{\left| {\overrightarrow a \times \overrightarrow b } \right|^2}$$
C $$0$$
D None of these
Answer :   $$42{\left| {\overrightarrow a \times \overrightarrow b } \right|^2}$$

212. Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be two noncollinear unit vectors. If $$\overrightarrow u = \overrightarrow a - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b $$     and $$\overrightarrow v = \overrightarrow a \times \overrightarrow b $$    then $$\left| {\overrightarrow v } \right|$$  is :

A $$\left| {\overrightarrow u } \right|$$
B $$\left| {\overrightarrow u } \right| + \left| {\overrightarrow u .\overrightarrow a } \right|$$
C $$\left| {\overrightarrow u } \right| + \left| {\overrightarrow u .\overrightarrow b } \right|$$
D $$\left| {\overrightarrow u } \right| + \overrightarrow u .\left( {\overrightarrow a .\overrightarrow b } \right)$$
Answer :   $$\left| {\overrightarrow u } \right|$$

213. A vector of magnitude 4 which is equally inclined to the vectors $$\overrightarrow i + \overrightarrow j ,\,\overrightarrow j + \overrightarrow k $$   and $$\overrightarrow k + \overrightarrow i $$  is :

A $$\frac{4}{{\sqrt 3 }}\left( {\overrightarrow i - \overrightarrow j - \overrightarrow k } \right)$$
B $$\frac{4}{{\sqrt 3 }}\left( {\overrightarrow i + \overrightarrow j - \overrightarrow k } \right)$$
C $$\frac{4}{{\sqrt 3 }}\left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right)$$
D none of these
Answer :   $$\frac{4}{{\sqrt 3 }}\left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right)$$

214. If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are any three vectors in space then $$\left( {\overrightarrow c + \overrightarrow b } \right) \times \left( {\overrightarrow c + \overrightarrow a } \right).\left( {\overrightarrow c + \overrightarrow b + \overrightarrow a } \right)$$        is equal to :

A $$3\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
B $$0$$
C $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
D none of these
Answer :   $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$

215. If the vectors $$\vec a,\,\vec b$$  and $${\vec c}$$ form the sides $$BC,\,CA$$   and $$AB$$  respectively of a triangle $$ABC,$$  then -

A $$\vec a.\vec b + \vec b.\vec c + \vec c.\vec a = 0$$
B $$\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a$$
C $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a$$
D $$\vec a \times \vec b + \vec b \times \vec c + \vec c \times \vec a = 0$$
Answer :   $$\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a$$

216. The vertices of a triangle $$ABC$$  are $$A\left( { - 1,\,0,\,2} \right),\,B\left( {1,\,2,\,0} \right)$$     and $$C\left( {2,\,3,\,4} \right).$$   The moment of a force of magnitude $$10$$  acting at $$A$$ along $$AB$$  about $$C$$ is :

A $$\frac{{50\sqrt 6 }}{3}$$
B $$20\sqrt 6 $$
C $$\frac{{50}}{{\sqrt 3 }}$$
D none of these
Answer :   $$\frac{{50\sqrt 6 }}{3}$$

217. Let $${x^2} + 3{y^2} = 3$$   be the equation of an ellipse in the $$x$$-$$y$$ plane. $$A$$ and $$B$$ are two points whose position vectors are $$ - \sqrt 3 \hat i$$  and $$ - \sqrt 3 \hat i + 2\hat k.$$   Then the position vector of a point $$P$$ on the ellipse such that $$\angle APB = \frac{\pi }{4}$$   is :

A $$ \pm \hat j$$
B $$ \pm \left( {\hat i + \hat j} \right)$$
C $$ \pm \hat i$$
D none of these
Answer :   $$ \pm \hat j$$

218. The vectors $$\overrightarrow {AB} = 3\hat i + 4\hat k\,\& \,\overrightarrow {AC} = 5\hat i - 2\hat j + 4\hat k$$         are the sides of a triangle $$ABC.$$   The length of the median through $$A$$ is :

A $$\sqrt {288} $$
B $$\sqrt {18} $$
C $$\sqrt {72} $$
D $$\sqrt {33} $$
Answer :   $$\sqrt {33} $$

219. If $$\vec a,\,\vec b,\,\vec c$$   are non coplanar unit vectors such that $$\vec a \times \left( {\vec b \times \vec c} \right) = \frac{{\left( {\vec b + \vec c} \right)}}{{\sqrt 2 }},$$       then the angle between $${\vec a}$$ and $${\vec b}$$ is :

A $$\frac{{3\pi }}{4}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{2}$$
D $$\pi $$
Answer :   $$\frac{{3\pi }}{4}$$

220. Let $$\overrightarrow r $$ be a vector perpendicular to $$\overrightarrow a + \overrightarrow b + \overrightarrow c ,$$   where $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] = 2.$$    If $$\overrightarrow r = l\left( {\overrightarrow b \times \overrightarrow c } \right) + m\left( {\overrightarrow c \times \overrightarrow a } \right) + n\left( {\overrightarrow a \times \overrightarrow b } \right)$$          then $$l + m + n$$   is :

A 2
B 1
C 0
D none of these
Answer :   0