3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
221.
Let $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ be three unit vectors such that $$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \frac{{\overrightarrow b + \overrightarrow c }}{{\sqrt 2 }}$$ and the angles between $$\overrightarrow a ,\,\overrightarrow c $$ and $$\overrightarrow a ,\,\overrightarrow b $$ be $$\alpha $$ and $$\beta $$ respectively then :
A
$$\alpha = \frac{{3\pi }}{4},\,\beta = \frac{\pi }{4}$$
B
$$\alpha = \frac{\pi }{4},\,\beta = \frac{{7\pi }}{4}$$
C
$$\alpha = \frac{\pi }{4},\,\beta = \frac{{3\pi }}{4}$$
$$\eqalign{
& \overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \frac{{\overrightarrow b + \overrightarrow c }}{{\sqrt 2 }}\,\,\,\,\, \Rightarrow \,\left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c = \frac{{\overrightarrow b + \overrightarrow c }}{{\sqrt 2 }}\, \cr
& \Rightarrow \overrightarrow a .\overrightarrow c = \frac{1}{{\sqrt 2 }},\,\,\,\,\,\overrightarrow a .\overrightarrow b = - \frac{1}{{\sqrt 2 }} \cr
& \Rightarrow \left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\cos \,\alpha = \frac{1}{{\sqrt 2 }},\,\,\,\,\,\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \,\beta = - \frac{1}{{\sqrt 2 }} \cr
& \therefore \,\,\cos \,\alpha = \frac{1}{{\sqrt 2 }},\,\,\,\,\,\cos \,\beta = - \frac{1}{{\sqrt 2 }} \cr
& \therefore \alpha = \frac{\pi }{4},\,\,\,\,\,\beta = \frac{{3\pi }}{4} \cr} $$
222.
If $$\overrightarrow a + \overrightarrow b = 2\overrightarrow i $$ and $$2\overrightarrow a - \overrightarrow b = \overrightarrow i - \overrightarrow j $$ then cosine of the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is :
A
$${\sin ^{ - 1}}\frac{4}{5}$$
B
$${\cos ^{ - 1}}\frac{4}{5}$$
C
$${\cos ^{ - 1}}\frac{3}{5}$$
D
none of these
Answer :
$${\cos ^{ - 1}}\frac{4}{5}$$
$$\eqalign{
& \overrightarrow a + \overrightarrow b + 2\overrightarrow a - \overrightarrow b = 2\overrightarrow i + \overrightarrow i - \overrightarrow j {\text{ or }}3\overrightarrow a = 3\overrightarrow i - \overrightarrow j \cr
& \therefore \,\overrightarrow a = \overrightarrow i - \frac{1}{3}\overrightarrow j \cr
& \therefore \overrightarrow b = 2\overrightarrow i - \overrightarrow a = \overrightarrow i + \frac{1}{3}\overrightarrow j \cr
& {\text{So, }}\cos \,\theta = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|}} = \frac{{1 - \frac{1}{9}}}{{\sqrt {1 + \frac{1}{9}} \sqrt {1 + \frac{1}{9}} }} = \frac{8}{{10}} = \frac{4}{5} \cr} $$
223.
A force $$F = 2i + j - k$$ acts at a point $$A,$$ whose position vector is $$2i - j.$$ The moment of $$F$$ about the origin is :
A
$$i + 2j - 4k$$
B
$$i - 2j - 4k$$
C
$$i + 2j + 4k$$
D
$$i - 2j + 4k$$
Answer :
$$i + 2j + 4k$$
Force $$\left( {\vec F} \right) = 2i + j - k$$ and its position vector of $$A = 2i - j.$$ We know that the position vector of a force about origin $$\left( r \right) = \left( {2i - j} \right) - \left( {0i + 0j + 0k} \right)$$ or $$r = 2i - j.$$
Therefore, moment of the force about origin
\[ = r \times \overrightarrow F = \left| \begin{array}{l}
i\,\,\,\,\,\,\,\,\,j\,\,\,\,\,\,\,\,\,\,\,k\\
2\,\,\, - 1\,\,\,\,\,\,\,\,0\\
2\,\,\,\,\,\,\,\,1\,\,\,\, - 1
\end{array} \right| = i + 2j + 4k.\]
224.
The distance between the planes $$x + 2y - 3z - 4 = 0$$ and $$2x + 4y - 6z = 1$$ along the line $$\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{2}$$ is :
A
$$\frac{{19}}{{22}}$$
B
$$\frac{3}{{22}}$$
C
$$5$$
D
none of these
Answer :
none of these
Any point on $$\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{2}$$ is $$\left( {r,\, - 3r,\,2r} \right).$$ It is on the first plane if
$$\eqalign{
& r + 2\left( { - 3r} \right) - 3\left( {2r} \right) - 4 = 0 \cr
& {\text{or }} - 11r - 4 = 0 \cr
& {\text{or }}r = - \frac{4}{{11}} \cr
& \therefore {\text{ the point is }}\left( { - \frac{4}{{11}},\,\frac{{12}}{{11}},\, - \frac{8}{{11}}} \right) \cr
& \left( {r,\, - 3r,\,2r} \right){\text{ is on the second plane if }} \cr
& 2r + 4\left( { - 3r} \right) - 6\left( {2r} \right) = 1 \cr
& {\text{or }} - 22r = 1 \cr
& {\text{or }}r = - \frac{1}{{22}} \cr
& \therefore {\text{ the point is }}\left( { - \frac{1}{{22}},\,\frac{3}{{22}},\, - \frac{1}{{11}}} \right) \cr
& \therefore {\text{ The distance }} = \sqrt {{{\left( { - \frac{4}{{11}} + \frac{1}{{22}}} \right)}^2} + {{\left( {\frac{{12}}{{11}} - \frac{3}{{22}}} \right)}^2} + {{\left( { - \frac{8}{{11}} + \frac{1}{{11}}} \right)}^2}} \cr
& = \sqrt {\frac{{49}}{{{{\left( {22} \right)}^2}}} + \frac{{441}}{{{{\left( {22} \right)}^2}}} + \frac{{49}}{{{{\left( {11} \right)}^2}}}} \cr
& = \frac{1}{{22}}\sqrt {49 + 441 + 196} \cr} $$
225.
For three noncoplanar vectors $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ the relation $$\left| {\overrightarrow a \times \overrightarrow b .\overrightarrow c } \right| = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|$$ holds if and only if :
A
$$\overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = 0$$
B
$$\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = 0$$
C
$$\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = 0$$
D
$$\overrightarrow c .\overrightarrow a = \overrightarrow a .\overrightarrow b = 0$$
Answer :
$$\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = 0$$
$$\left| {\overrightarrow a \times \overrightarrow b .\overrightarrow c } \right| = $$ volume of the parallelepiped $$ = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|$$
$$ \Rightarrow $$ it is a rectangular parallelepiped, i.e., concurrent edges are perpendicular to each other. So, $$\overrightarrow a .\overrightarrow b = 0,\,\overrightarrow b .\overrightarrow c = 0,\,\overrightarrow c .\overrightarrow a = 0.$$
226.
Let the position vectors of the points $$A,\,B,\,C$$ be $$\overrightarrow i + 2\overrightarrow j + 3\overrightarrow k ,\, - \overrightarrow i - \overrightarrow j + 8\overrightarrow k $$ and $$ - 4\overrightarrow i + 4\overrightarrow j + 6\overrightarrow k $$ respectively. Then the $$\Delta ABC$$ is :
$$\overrightarrow a = 2\hat i - m\hat j + 3m\hat k\,\,\& \,\,\overrightarrow b = \left( {1 + m} \right)\hat i - 2m\hat j + \hat k$$
and if angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is an acute, then $$\overrightarrow a .\overrightarrow b > 0$$
$$\eqalign{
& \Rightarrow 2\left( {1 + m} \right) + 2{m^2} + 3m > 0 \cr
& \Rightarrow 2{m^2} + 5m + 2 > 0 \cr
& \Rightarrow 2{m^2} + 4m + m + 2 > 0 \cr
& \Rightarrow \left( {2m + 1} \right)\left( {m + 2} \right) > 0 \cr
& \Rightarrow m < - 2{\text{ or }}m > - \frac{1}{2} \cr} $$
228.
If $$\left| {\vec a} \right| = 4,\,\left| {\vec b} \right| = 2$$ and the angle between $${\vec a}$$ and $${\vec b}$$ is $$\frac{\pi }{6}$$ then $${\left( {\vec a \times \vec b} \right)^2}$$ is equal to :
229.
Let $$\vec a,\,\vec b,\,\vec c$$ be unit vectors such that $$\vec a + \vec b + \vec c = \vec 0.$$ Which one of the following is correct ?
A
$$\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a = \vec 0$$
B
$$\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a \ne \vec 0$$
C
$$\vec a \times \vec b = \vec b \times \vec c = \vec a \times \vec c \ne \vec 0$$
D
$$\vec a \times \vec b,\,\vec b \times \vec c,\,\vec c \times \vec a$$ are mutually perpendicular
Answer :
$$\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a \ne \vec 0$$
Since, $$\vec a + \vec b + \vec c = \vec 0$$ and $$\vec a,\,\vec b,\,\vec c$$ are unit vectors, therefore $$\vec a,\,\vec b,\,\vec c$$ form an equilateral triangle.
$$\eqalign{
& \Rightarrow \vec a \times \left( {\vec a + \vec b + \vec c} \right) = \vec 0 \cr
& \Rightarrow \vec a \times \vec a + \vec a \times \vec b + \vec a \times \vec c = \vec 0 \cr
& \Rightarrow \vec a \times \vec b = \vec c \times \vec a \cr
& {\text{Similarly, }}\vec b \times \vec c = \vec c \times \vec a \cr
& \therefore \vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a \cr} $$
Also since $$\vec a,\,\vec b,\,\vec c$$ are non parallel (these form an equilateral $$\Delta $$ ).
$$\therefore \vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a \ne \vec 0$$
230.
If $$\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w $$ are non-coplanar vectors and $$p,\,q$$ are real numbers, then the equality $$\left[ {3\overrightarrow u \,p\overrightarrow v \,p\overrightarrow w } \right] - \left[ {p\overrightarrow v \,p\overrightarrow w \,q\overrightarrow u } \right] - \left[ {2\overrightarrow w \,q\overrightarrow v \,q\overrightarrow u } \right] = 0$$ holds for :
A
exactly two values of $$\left( {p,\,q} \right)$$
B
more than two but not all values of $$\left( {p,\,q} \right)$$
C
all values of $$\left( {p,\,q} \right)$$
D
exactly one value of $$\left( {p,\,q} \right)$$
Answer :
exactly one value of $$\left( {p,\,q} \right)$$
$$\because \,\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w $$ are non-coplanar vectors
$$\eqalign{
& \therefore \left[ {\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w } \right] \ne 0 \cr
& {\text{Now, }}\left[ {3\overrightarrow u ,\,p\overrightarrow v ,\,p\overrightarrow w } \right] - \left[ {p\overrightarrow v ,\,p\overrightarrow w ,\,q\overrightarrow u } \right] - \left[ {2\overrightarrow w ,\,q\overrightarrow v ,\,q\overrightarrow u } \right] = 0 \cr
& \Rightarrow 3{p^2}\left[ {\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w } \right] - pq\left[ {\overrightarrow v ,\,\overrightarrow w ,\,\overrightarrow u } \right] - 2{q^2}\left[ {\overrightarrow w ,\,\overrightarrow v ,\,\overrightarrow u } \right] = 0 \cr
& \Rightarrow 3{p^2}\left[ {\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w } \right] - pq\left[ {\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w } \right] + 2{q^2}\left[ {\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w } \right] = 0 \cr
& \Rightarrow \left( {3{p^2} - pq + 2{q^2}} \right)\left[ {\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w } \right] = 0 \cr
& \Rightarrow 3{p^2} - pq + 2{q^2} = 0 \cr
& \Rightarrow 2{p^2} + {p^2} - pq + \frac{{{q^2}}}{4} + \frac{{7{q^2}}}{4} = 0 \cr
& \Rightarrow 2{p^2} + {\left( {p - \frac{q}{2}} \right)^2} + \frac{7}{4}{q^2} = 0 \cr
& \Rightarrow p = 0,\,q = 0,\,p = \frac{q}{2} \cr} $$
This is possible only when $$p = 0,\,q = 0$$
$$\therefore $$ There is exactly one value of $$\left( {p,\,q} \right)$$