3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

221. Let $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   be three unit vectors such that $$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \frac{{\overrightarrow b + \overrightarrow c }}{{\sqrt 2 }}$$      and the angles between $$\overrightarrow a ,\,\overrightarrow c $$  and $$\overrightarrow a ,\,\overrightarrow b $$  be $$\alpha $$ and $$\beta $$ respectively then :

A $$\alpha = \frac{{3\pi }}{4},\,\beta = \frac{\pi }{4}$$
B $$\alpha = \frac{\pi }{4},\,\beta = \frac{{7\pi }}{4}$$
C $$\alpha = \frac{\pi }{4},\,\beta = \frac{{3\pi }}{4}$$
D none of these
Answer :   $$\alpha = \frac{\pi }{4},\,\beta = \frac{{3\pi }}{4}$$

222. If $$\overrightarrow a + \overrightarrow b = 2\overrightarrow i $$   and $$2\overrightarrow a - \overrightarrow b = \overrightarrow i - \overrightarrow j $$    then cosine of the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is :

A $${\sin ^{ - 1}}\frac{4}{5}$$
B $${\cos ^{ - 1}}\frac{4}{5}$$
C $${\cos ^{ - 1}}\frac{3}{5}$$
D none of these
Answer :   $${\cos ^{ - 1}}\frac{4}{5}$$

223. A force $$F = 2i + j - k$$    acts at a point $$A,$$ whose position vector is $$2i - j.$$   The moment of $$F$$ about the origin is :

A $$i + 2j - 4k$$
B $$i - 2j - 4k$$
C $$i + 2j + 4k$$
D $$i - 2j + 4k$$
Answer :   $$i + 2j + 4k$$

224. The distance between the planes $$x + 2y - 3z - 4 = 0$$     and $$2x + 4y - 6z = 1$$    along the line $$\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{2}$$    is :

A $$\frac{{19}}{{22}}$$
B $$\frac{3}{{22}}$$
C $$5$$
D none of these
Answer :   none of these

225. For three noncoplanar vectors $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   the relation $$\left| {\overrightarrow a \times \overrightarrow b .\overrightarrow c } \right| = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|$$      holds if and only if :

A $$\overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = 0$$
B $$\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = 0$$
C $$\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = 0$$
D $$\overrightarrow c .\overrightarrow a = \overrightarrow a .\overrightarrow b = 0$$
Answer :   $$\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = 0$$

226. Let the position vectors of the points $$A,\,B,\,C$$   be $$\overrightarrow i + 2\overrightarrow j + 3\overrightarrow k ,\, - \overrightarrow i - \overrightarrow j + 8\overrightarrow k $$      and $$ - 4\overrightarrow i + 4\overrightarrow j + 6\overrightarrow k $$    respectively. Then the $$\Delta ABC$$   is :

A right angled
B equilateral
C isosceles
D none of these
Answer :   equilateral

227. The vectors $$\left( {2\hat i - m\hat j + 3m\hat k} \right)\& \left\{ {\left( {1 + m} \right)\hat i - 2m\hat j + \hat k} \right\}$$         include an acute angle for :

A all values of $$m$$
B $$m < - 2{\text{ or }}m > - \frac{1}{2}$$
C $$m = - \frac{1}{2}$$
D $$m\, \in \left[ { - 2,\, - \frac{1}{2}} \right]$$
Answer :   $$m < - 2{\text{ or }}m > - \frac{1}{2}$$

228. If $$\left| {\vec a} \right| = 4,\,\left| {\vec b} \right| = 2$$    and the angle between $${\vec a}$$ and $${\vec b}$$ is $$\frac{\pi }{6}$$ then $${\left( {\vec a \times \vec b} \right)^2}$$   is equal to :

A $$48$$
B $$16$$
C $${\vec a}$$
D none of these
Answer :   $$16$$

229. Let $$\vec a,\,\vec b,\,\vec c$$   be unit vectors such that $$\vec a + \vec b + \vec c = \vec 0.$$   Which one of the following is correct ?

A $$\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a = \vec 0$$
B $$\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a \ne \vec 0$$
C $$\vec a \times \vec b = \vec b \times \vec c = \vec a \times \vec c \ne \vec 0$$
D $$\vec a \times \vec b,\,\vec b \times \vec c,\,\vec c \times \vec a$$     are mutually perpendicular
Answer :   $$\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a \ne \vec 0$$

230. If $$\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w $$   are non-coplanar vectors and $$p,\,q$$  are real numbers, then the equality $$\left[ {3\overrightarrow u \,p\overrightarrow v \,p\overrightarrow w } \right] - \left[ {p\overrightarrow v \,p\overrightarrow w \,q\overrightarrow u } \right] - \left[ {2\overrightarrow w \,q\overrightarrow v \,q\overrightarrow u } \right] = 0$$           holds for :

A exactly two values of $$\left( {p,\,q} \right)$$
B more than two but not all values of $$\left( {p,\,q} \right)$$
C all values of $$\left( {p,\,q} \right)$$
D exactly one value of $$\left( {p,\,q} \right)$$
Answer :   exactly one value of $$\left( {p,\,q} \right)$$