3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

231. If $$\overrightarrow p = \lambda \left( {\overrightarrow u \times \overrightarrow v } \right) + \mu \left( {\overrightarrow v \times \overrightarrow w } \right) + \nu \left( {\overrightarrow w \times \overrightarrow u } \right)$$          and $$\left[ {\overrightarrow u \overrightarrow v \overrightarrow w } \right] = \frac{1}{5},$$    then $$\lambda + \mu + \nu $$   is equal to :

A 5
B 10
C 15
D none of these
Answer :   none of these

232. $$\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow b \times \overrightarrow c } \right] + {\left( {\overrightarrow b .\overrightarrow c } \right)^2}$$      is equal to :

A $${\left| {\overrightarrow b } \right|^2}{\left| {\overrightarrow c } \right|^2}$$
B $${\left( {\overrightarrow b + \overrightarrow c } \right)^2}$$
C $${\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2}$$
D none of these
Answer :   $${\left| {\overrightarrow b } \right|^2}{\left| {\overrightarrow c } \right|^2}$$

233. Let $$\overrightarrow a $$ be a unit vector perpendicular to unit vectors $$\overrightarrow b $$ and $$\overrightarrow c $$ and if the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$ be $$\alpha $$ then $$\overrightarrow b \times \overrightarrow c $$   is :

A $$\cos \,\alpha \,\overrightarrow a $$
B $${\text{cosec}}\,\alpha \,\overrightarrow a $$
C $$\sin \,\alpha \,\overrightarrow a $$
D none of these
Answer :   $$\sin \,\alpha \,\overrightarrow a $$

234. A variable plane at a distance of the one unit from the origin cuts the coordinates axes at $$A,\,B$$  and $$C.$$  If the centroid $$D\left( {x,\,y,\,z} \right)$$   of triangle $$ABC$$  satisfies the relation $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} = k,$$     then the value of $$k$$ is :

A $$3$$
B $$1$$
C $$\frac{1}{3}$$
D $$9$$
Answer :   $$9$$

235. If $$\overrightarrow a \times \left( {\overrightarrow a \times \overrightarrow b } \right) = \overrightarrow b \times \left( {\overrightarrow b \times \overrightarrow c } \right)$$       and $$\overrightarrow a .\overrightarrow b \ne 0$$   then $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$   is equal to :

A 0
B 1
C 2
D none of these
Answer :   0

236. If the middle points of sides $$BC,\,CA\,\& \,AB$$    of triangle $$ABC$$  are respectively $$D,\,E,\,F$$   then position vector of centre of triangle $$DEF,$$  when position vector of $$A,\,B,\,C$$   are respectively $$\hat i + \hat j,\,\hat j + \hat k,\,\hat k + \hat i$$     is :

A $$\frac{1}{3}\left( {\hat i + \hat j + \hat k} \right)$$
B $$\left( {\hat i + \hat j + \hat k} \right)$$
C $$2\left( {\hat i + \hat j + \hat k} \right)$$
D $$\frac{2}{3}\left( {\hat i + \hat j + \hat k} \right)$$
Answer :   $$\frac{2}{3}\left( {\hat i + \hat j + \hat k} \right)$$

237. If $$a,\,b,\,c$$   are the $${p^{th}},\,{q^{th}},\,{r^{th}}$$   terms of an HP and $$\overrightarrow u = \left( {q - r} \right)\hat i + \left( {r - p} \right)\hat j + \left( {p - q} \right)\hat k,\,\overrightarrow v = \frac{{\overrightarrow i }}{a} + \frac{{\overrightarrow j }}{b} + \frac{{\overrightarrow k }}{c}{\text{ then :}}$$

A $$\overrightarrow u ,\,\overrightarrow v $$  are parallel vectors
B $$\overrightarrow u ,\,\overrightarrow v $$  are orthogonal vectors
C $$\vec u.\vec v = 1$$
D $$\vec u \times \vec v = \overrightarrow i + \overrightarrow j + \overrightarrow k $$
Answer :   $$\overrightarrow u ,\,\overrightarrow v $$  are orthogonal vectors

238. The adjacent sides $$AB$$  and $$AC$$  of a triangle $$ABC$$  are represented by the vectors $$ - 2\hat i + 3\hat j + 2\hat k$$    and $$ - 4\hat i + 5\hat j + 2\hat k$$    respectively. The area of the triangle $$ABC$$  is :

A $$6$$ square units
B $$5$$ square units
C $$4$$ square units
D $$3$$ square units
Answer :   $$3$$ square units

239. $${\left( {\overrightarrow a .\overrightarrow i } \right)^2} + {\left( {\overrightarrow a .\overrightarrow j } \right)^2} + {\left( {\overrightarrow a .\overrightarrow k } \right)^2}$$       is equal to :

A $${\overrightarrow a ^2}$$
B $$3$$
C $${\left| {\overrightarrow a .\left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right)} \right|^2}$$
D none of these
Answer :   $${\overrightarrow a ^2}$$

240. If vector $$a = 2i - 3j + 6k$$    and vector $$b = - 2i + 2j - k,$$    then $$\frac{{{\text{Projection of vector }}a{\text{ on vector }}b}}{{{\text{Projection of vector }}b{\text{ on vector}}\,a}} = \,?$$

A $$\frac{3}{7}$$
B $$\frac{7}{3}$$
C $$3$$
D $$7$$
Answer :   $$\frac{7}{3}$$