3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
231.
If $$\overrightarrow p = \lambda \left( {\overrightarrow u \times \overrightarrow v } \right) + \mu \left( {\overrightarrow v \times \overrightarrow w } \right) + \nu \left( {\overrightarrow w \times \overrightarrow u } \right)$$ and $$\left[ {\overrightarrow u \overrightarrow v \overrightarrow w } \right] = \frac{1}{5},$$ then $$\lambda + \mu + \nu $$ is equal to :
A
5
B
10
C
15
D
none of these
Answer :
none of these
$$\eqalign{
& \overrightarrow p = \lambda \left( {\overrightarrow u \times \overrightarrow v } \right) + \mu \left( {\overrightarrow v \times \overrightarrow w } \right) + \nu \left( {\overrightarrow w \times \overrightarrow u } \right) \cr
& \Rightarrow \overrightarrow p .\overrightarrow w = \lambda \left( {\overrightarrow u \times \overrightarrow v } \right).\overrightarrow w + \mu \left( {\overrightarrow v \times \overrightarrow w } \right).\overrightarrow w + \nu \left( {\overrightarrow w \times \overrightarrow u } \right).\overrightarrow w \cr
& \Rightarrow \lambda \left[ {\overrightarrow u \overrightarrow v \overrightarrow w } \right] + 0 + 0 = \frac{\lambda }{5} \cr
& \Rightarrow \lambda = 5\left( {\overrightarrow p .\overrightarrow w } \right) \cr
& {\text{Similarly, }}\mu = 5\left( {\overrightarrow p .\overrightarrow u } \right){\text{ and }}\nu = 5\left( {\overrightarrow p .\overrightarrow v } \right) \cr
& \therefore \,\lambda + \mu + \nu \cr
& = 5\left( {\overrightarrow p .\overrightarrow w } \right) + 5\left( {\overrightarrow p .\overrightarrow u } \right) + 5\left( {\overrightarrow p .\overrightarrow v } \right) \cr
& = 5\overrightarrow p \left( {\overrightarrow u + \overrightarrow v + \overrightarrow w } \right) \cr
& {\text{Hence, }}\lambda + \mu + \nu {\text{ depends on the vectors}}{\text{.}} \cr} $$
232.
$$\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow b \times \overrightarrow c } \right] + {\left( {\overrightarrow b .\overrightarrow c } \right)^2}$$ is equal to :
A
$${\left| {\overrightarrow b } \right|^2}{\left| {\overrightarrow c } \right|^2}$$
B
$${\left( {\overrightarrow b + \overrightarrow c } \right)^2}$$
C
$${\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2}$$
D
none of these
Answer :
$${\left| {\overrightarrow b } \right|^2}{\left| {\overrightarrow c } \right|^2}$$
$$\eqalign{
& \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow b \times \overrightarrow c } \right] = \overrightarrow b .\overrightarrow c \times \left( {\overrightarrow b \times \overrightarrow c } \right) \cr
& = \overrightarrow b .\left\{ {\left( {\overrightarrow c .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow c .\overrightarrow b } \right)\overrightarrow c } \right\} \cr
& = \left( {\overrightarrow c .\overrightarrow c } \right)\left( {\overrightarrow b .\overrightarrow b } \right) - {\left( {\overrightarrow b + \overrightarrow c } \right)^2} \cr
& \therefore \,\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow b \times \overrightarrow c } \right] + {\left( {\overrightarrow b + \overrightarrow c } \right)^2} = {\left| {\overrightarrow c } \right|^2}\,{\left| {\overrightarrow b } \right|^2} \cr} $$
233.
Let $$\overrightarrow a $$ be a unit vector perpendicular to unit vectors $$\overrightarrow b $$ and $$\overrightarrow c $$ and if the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$ be $$\alpha $$ then $$\overrightarrow b \times \overrightarrow c $$ is :
A
$$\cos \,\alpha \,\overrightarrow a $$
B
$${\text{cosec}}\,\alpha \,\overrightarrow a $$
C
$$\sin \,\alpha \,\overrightarrow a $$
D
none of these
Answer :
$$\sin \,\alpha \,\overrightarrow a $$
$$\eqalign{
& \left| {\overrightarrow b \times \overrightarrow c } \right| = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\,\sin \,\alpha = \sin \,\alpha \cr
& {\text{Now, }}\frac{{\overrightarrow b \times \overrightarrow c }}{{\left| {\overrightarrow b \times \overrightarrow c } \right|}} = \overrightarrow a \,\,\left( {{\text{given}}} \right) \cr
& \therefore \,\,\overrightarrow b \times \overrightarrow c = \sin \,\alpha \,\overrightarrow a . \cr} $$
234.
A variable plane at a distance of the one unit from the origin cuts the coordinates axes at $$A,\,B$$ and $$C.$$ If the centroid $$D\left( {x,\,y,\,z} \right)$$ of triangle $$ABC$$ satisfies the relation $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} = k,$$ then the value of $$k$$ is :
A
$$3$$
B
$$1$$
C
$$\frac{1}{3}$$
D
$$9$$
Answer :
$$9$$
Let the equation of variable plane be $$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$ which meets the axes at $$A\left( {a,\,0,\,0} \right),\,B\left( {0,\,b,\,0} \right)$$ and $$C\left( {0,\,0,\,c} \right).$$
$$\therefore $$ Centroid of $$\Delta ABC$$ is $$\left( {\frac{a}{3},\,\frac{b}{3},\,\frac{c}{3}} \right)$$
and it satisfies the relation
$$\eqalign{
& \frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} = k \cr
& \Rightarrow \frac{9}{{{a^2}}} + \frac{9}{{{b^2}}} + \frac{9}{{{c^2}}} = k \cr
& \Rightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{k}{9}.....(1) \cr} $$
Also given that the distance of plane $$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
from (0, 0, 0) is 1 unit.
$$\eqalign{
& \Rightarrow \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} }} = 1 \cr
& \Rightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = 1.....(2) \cr} $$
From (1) and (2), we get $$\frac{k}{9} = 1\,\,\,\,\,i.e.,\,\,k = 9$$
235.
If $$\overrightarrow a \times \left( {\overrightarrow a \times \overrightarrow b } \right) = \overrightarrow b \times \left( {\overrightarrow b \times \overrightarrow c } \right)$$ and $$\overrightarrow a .\overrightarrow b \ne 0$$ then $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$ is equal to :
A
0
B
1
C
2
D
none of these
Answer :
0
$$\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow a - \left( {\overrightarrow a .\overrightarrow a } \right)\overrightarrow b = \left( {\overrightarrow b .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b .\overrightarrow b } \right)\overrightarrow c .$$ Taking dot product with $$\overrightarrow b \times \overrightarrow c ,\,\left( {\overrightarrow a .\overrightarrow b } \right)\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] = 0\,\,\,\,\,\,\,\, \Rightarrow \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] = 0.$$
236.
If the middle points of sides $$BC,\,CA\,\& \,AB$$ of triangle $$ABC$$ are respectively $$D,\,E,\,F$$ then position vector of centre of triangle $$DEF,$$ when position vector of $$A,\,B,\,C$$ are respectively $$\hat i + \hat j,\,\hat j + \hat k,\,\hat k + \hat i$$ is :
A
$$\frac{1}{3}\left( {\hat i + \hat j + \hat k} \right)$$
B
$$\left( {\hat i + \hat j + \hat k} \right)$$
C
$$2\left( {\hat i + \hat j + \hat k} \right)$$
D
$$\frac{2}{3}\left( {\hat i + \hat j + \hat k} \right)$$
The position vector of points $$D,\,E,\,F$$ are respectively
$$\frac{{\hat i + \hat j}}{2} + \hat k,\,\hat i + \frac{{\hat k + \hat j}}{2}{\text{ and }}\frac{{\hat i + \hat k}}{2} + \hat j$$
So, position vector of centre of $$\Delta DEF$$
$$\eqalign{
& = \frac{1}{3}\left[ {\frac{{\hat i + \hat j}}{2} + \hat k + \hat i + \frac{{\hat k + \hat j}}{2}{\text{ + }}\frac{{\hat i + \hat k}}{2} + \hat j} \right] \cr
& = \frac{2}{3}\left[ {\hat i + \hat j + \hat k} \right] \cr} $$
237.
If $$a,\,b,\,c$$ are the $${p^{th}},\,{q^{th}},\,{r^{th}}$$ terms of an HP and $$\overrightarrow u = \left( {q - r} \right)\hat i + \left( {r - p} \right)\hat j + \left( {p - q} \right)\hat k,\,\overrightarrow v = \frac{{\overrightarrow i }}{a} + \frac{{\overrightarrow j }}{b} + \frac{{\overrightarrow k }}{c}{\text{ then :}}$$
A
$$\overrightarrow u ,\,\overrightarrow v $$ are parallel vectors
B
$$\overrightarrow u ,\,\overrightarrow v $$ are orthogonal vectors
C
$$\vec u.\vec v = 1$$
D
$$\vec u \times \vec v = \overrightarrow i + \overrightarrow j + \overrightarrow k $$
Answer :
$$\overrightarrow u ,\,\overrightarrow v $$ are orthogonal vectors
238.
The adjacent sides $$AB$$ and $$AC$$ of a triangle $$ABC$$ are represented by the vectors $$ - 2\hat i + 3\hat j + 2\hat k$$ and $$ - 4\hat i + 5\hat j + 2\hat k$$ respectively. The area of the triangle $$ABC$$ is :
239.
$${\left( {\overrightarrow a .\overrightarrow i } \right)^2} + {\left( {\overrightarrow a .\overrightarrow j } \right)^2} + {\left( {\overrightarrow a .\overrightarrow k } \right)^2}$$ is equal to :
A
$${\overrightarrow a ^2}$$
B
$$3$$
C
$${\left| {\overrightarrow a .\left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right)} \right|^2}$$
D
none of these
Answer :
$${\overrightarrow a ^2}$$
Let $$\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow {k.} $$ Then $$\overrightarrow a .\overrightarrow i = x,\,\overrightarrow a .\overrightarrow j = y,\,\overrightarrow a .\overrightarrow k = z.$$
As $$\overrightarrow a = \left( {\overrightarrow a .\overrightarrow i } \right)\overrightarrow i + \left( {\overrightarrow a .\overrightarrow j } \right)\overrightarrow j + \left( {\overrightarrow a .\overrightarrow k } \right)\overrightarrow k ,$$
$${\left| {\overrightarrow a } \right|^2} = {\left( {\overrightarrow a .\overrightarrow i } \right)^2} + {\left( {\overrightarrow a .\overrightarrow j } \right)^2} + {\left( {\overrightarrow a .\overrightarrow k } \right)^2}{\text{ and }}{\left| {\overrightarrow a } \right|^2} = {\overrightarrow a ^2}$$
240.
If vector $$a = 2i - 3j + 6k$$ and vector $$b = - 2i + 2j - k,$$ then $$\frac{{{\text{Projection of vector }}a{\text{ on vector }}b}}{{{\text{Projection of vector }}b{\text{ on vector}}\,a}} = \,?$$
A
$$\frac{3}{7}$$
B
$$\frac{7}{3}$$
C
$$3$$
D
$$7$$
Answer :
$$\frac{7}{3}$$
Required value $$ = \frac{{\frac{{b.a}}{{\left| b \right|}}}}{{\frac{{a.b}}{{\left| b \right|}}}} = \frac{{\left| a \right|}}{{\left| b \right|}} = \frac{7}{3}.$$