3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

241. If $$\overrightarrow a = 2\hat i - 2\hat j + \hat k$$     and $$\overrightarrow c = - \hat i + 2\hat k$$    then $$\left| {\overrightarrow c } \right|.\overrightarrow a $$  is equal to :

A $$2\sqrt 5 \hat i + 2\sqrt 5 \hat j + \sqrt 5 \hat k$$
B $$2\sqrt 5 \hat i - 2\sqrt 5 \hat j + \sqrt 5 \hat k$$
C $$\sqrt 5 \hat i + \sqrt 5 \hat j + \sqrt 5 \hat k$$
D $$\sqrt 5 \hat i + 2\sqrt 5 \hat j + \sqrt 5 \hat k$$
Answer :   $$2\sqrt 5 \hat i - 2\sqrt 5 \hat j + \sqrt 5 \hat k$$

242. If $$\vec a,\,\vec b,\,\vec c$$   arenon coplanar vectors and $$\lambda $$ is a real number then $$\left[ {\lambda \left( {\vec a + \vec b} \right){\lambda ^2}\vec b\,\lambda \vec c} \right] = \left[ {\vec a\,\vec b + \vec c\,\vec b} \right]$$      for :

A exactly one value of $$\lambda $$
B no value of $$\lambda $$
C exactly three values of $$\lambda $$
D exactly two values of $$\lambda $$
Answer :   no value of $$\lambda $$

243. A ship is sailing towards north at a speed of $$1.25\,{{m/s}}.$$   The current is taking it towards east at the rate of $$1\,{{m/s}}.$$  A sailor is climbing a vertical pole on the ship at the rate of $$0.5\,{{m/s}}.$$   The magnitude of the velocity of the sailor in space is :

A $$2.75\,{{m/s}}$$
B $$\frac{{3\sqrt 5 }}{4}\,{{m/s}}$$
C $$\frac{{3\sqrt 5 }}{2}\,{{m/s}}$$
D none of these
Answer :   $$\frac{{3\sqrt 5 }}{4}\,{{m/s}}$$

244. $$P$$ is a point in the plane of the $$\Delta ABC$$   whose orthocentre is $$H$$ and the circumcentre is $$O.$$ Forces $$\overrightarrow {AP} ,\,\overrightarrow {BP} ,\,\overrightarrow {CP} $$    and $$\overrightarrow {PH} $$  act at $$P.$$ The force that will keep the given forces in equilibrium is :

A $$2\overrightarrow {OP} $$
B $$3\overrightarrow {PO} $$
C $$2\overrightarrow {PO} $$
D none of these
Answer :   $$2\overrightarrow {PO} $$

245. Let $$\alpha ,\,\beta ,\,\gamma $$  be distinct real numbers. The points with position vectors of $$\alpha \hat i + \,\beta \hat j + \,\gamma \hat k,\,\,\beta \hat i + \,\gamma \hat j + \alpha \hat k,\,\,\gamma \hat i + \alpha \hat j + \,\beta \hat k$$

A are collinear
B form an equilateral triangle
C form a scalene triangle
D form a right angled triangle
Answer :   form an equilateral triangle

246. If $$\overrightarrow c $$ is the unit vector perpendicular to both the vectors $$\overrightarrow a $$ and $$\overrightarrow b,$$ then what is another unit vector perpendicular to both the vectors $$\overrightarrow a $$ and $$\overrightarrow b \,?$$

A $$\overrightarrow c \times \overrightarrow a $$
B $$\overrightarrow c \times \overrightarrow b $$
C $$ - \frac{{\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{\left| {\overrightarrow a \times \overrightarrow b } \right|}}$$
D $$\frac{{\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{\left| {\overrightarrow a \times \overrightarrow b } \right|}}$$
Answer :   $$\frac{{\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{\left| {\overrightarrow a \times \overrightarrow b } \right|}}$$

247. If $$\frac{\alpha }{{\alpha '}},\,\frac{\beta }{{\beta '}},\,\frac{\gamma }{{\gamma '}}$$   are not all equal, the point of intersection of the lines $$\frac{{x - \alpha '}}{\alpha } = \frac{{y - \beta '}}{\beta } = \frac{{z - \gamma '}}{\gamma }$$      and $$\frac{{x - \alpha }}{{\alpha '}} = \frac{{y - \beta }}{{\beta '}} = \frac{{z - \gamma }}{{\gamma '}}$$      is :

A $$\left( {\alpha - \alpha ',\,\beta - \beta ',\,\gamma - \gamma '} \right)$$
B $$\left( {\alpha + \alpha ',\,\beta + \beta ',\,\gamma + \gamma '} \right)$$
C $$\left( {\alpha \alpha ',\,\beta \beta ',\,\gamma \gamma '} \right)$$
D none because they are nonintersecting
Answer :   $$\left( {\alpha + \alpha ',\,\beta + \beta ',\,\gamma + \gamma '} \right)$$

248. If $$\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a$$     then $$\vec a + \vec b + \vec c = ?$$

A $$abc$$
B $$ - 1$$
C $$0$$
D $$2$$
Answer :   $$0$$

249. If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are three noncoplanar nonzero vectors then $$\left( {\overrightarrow a .\overrightarrow a } \right)\overrightarrow b \times \overrightarrow c + \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c \times \overrightarrow a + \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow a \times \overrightarrow b $$           is equal to :

A $$\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right]\overrightarrow a $$
B $$\left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right]\overrightarrow b $$
C $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow c $$
D none of these
Answer :   $$\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right]\overrightarrow a $$

250. The values of $$a$$, for which points $$A,\,B,\,C$$   with position vectors $$2\hat i - \hat j + \hat k,\,\hat i - 3\hat j - 5\hat k$$     and $$a\hat i - 3\hat j + \hat k$$   respectively are the vertices of a right angled triangle with $$C = \frac{\pi }{2}$$  are :

A $$2$$ and $$1$$
B $$-2$$  and $$-1$$
C $$-2$$  and $$-1$$
D $$2$$ and $$-1$$
Answer :   $$2$$ and $$1$$