3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
241.
If $$\overrightarrow a = 2\hat i - 2\hat j + \hat k$$ and $$\overrightarrow c = - \hat i + 2\hat k$$ then $$\left| {\overrightarrow c } \right|.\overrightarrow a $$ is equal to :
A
$$2\sqrt 5 \hat i + 2\sqrt 5 \hat j + \sqrt 5 \hat k$$
B
$$2\sqrt 5 \hat i - 2\sqrt 5 \hat j + \sqrt 5 \hat k$$
C
$$\sqrt 5 \hat i + \sqrt 5 \hat j + \sqrt 5 \hat k$$
D
$$\sqrt 5 \hat i + 2\sqrt 5 \hat j + \sqrt 5 \hat k$$
$$\eqalign{
& {\text{If }}\overrightarrow a = 2\hat i - 2\hat j + \hat k{\text{ and }}\overrightarrow c = - \hat i + 2\hat k \cr
& \left| {\overrightarrow c } \right| = \sqrt {{{\left( { - 1} \right)}^2} + {2^2}} = \sqrt {1 + 4} = \sqrt 5 \cr
& \left| {\overrightarrow c } \right|.\overrightarrow a = \sqrt 5 .\left( {2\hat i - 2\hat j + \hat k} \right) \cr
& \therefore \,\left| {\overrightarrow c } \right|.\overrightarrow a = 2\sqrt 5 \hat i - 2\sqrt 5 \hat j + \sqrt 5 \hat k \cr} $$
242.
If $$\vec a,\,\vec b,\,\vec c$$ arenon coplanar vectors and $$\lambda $$ is a real number then $$\left[ {\lambda \left( {\vec a + \vec b} \right){\lambda ^2}\vec b\,\lambda \vec c} \right] = \left[ {\vec a\,\vec b + \vec c\,\vec b} \right]$$ for :
243.
A ship is sailing towards north at a speed of $$1.25\,{{m/s}}.$$ The current is taking it towards east at the rate of $$1\,{{m/s}}.$$ A sailor is climbing a vertical pole on the ship at the rate of $$0.5\,{{m/s}}.$$ The magnitude of the velocity of the sailor in space is :
A
$$2.75\,{{m/s}}$$
B
$$\frac{{3\sqrt 5 }}{4}\,{{m/s}}$$
C
$$\frac{{3\sqrt 5 }}{2}\,{{m/s}}$$
D
none of these
Answer :
$$\frac{{3\sqrt 5 }}{4}\,{{m/s}}$$
The velocity vector $$ = \overrightarrow i + \frac{5}{4}\overrightarrow j + \frac{1}{2}\overrightarrow k $$
$$\therefore $$ velocity $$ = \left| {\overrightarrow i + \frac{5}{4}\overrightarrow j + \frac{1}{2}\overrightarrow k } \right| = \sqrt {{1^2} + {{\left( {\frac{5}{4}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2}} = \frac{{3\sqrt 5 }}{4}$$
244.
$$P$$ is a point in the plane of the $$\Delta ABC$$ whose orthocentre is $$H$$ and the circumcentre is $$O.$$ Forces $$\overrightarrow {AP} ,\,\overrightarrow {BP} ,\,\overrightarrow {CP} $$ and $$\overrightarrow {PH} $$ act at $$P.$$ The force that will keep the given forces in equilibrium is :
245.
Let $$\alpha ,\,\beta ,\,\gamma $$ be distinct real numbers. The points with position
vectors of $$\alpha \hat i + \,\beta \hat j + \,\gamma \hat k,\,\,\beta \hat i + \,\gamma \hat j + \alpha \hat k,\,\,\gamma \hat i + \alpha \hat j + \,\beta \hat k$$
246.
If $$\overrightarrow c $$ is the unit vector perpendicular to both the vectors $$\overrightarrow a $$ and $$\overrightarrow b,$$ then what is another unit vector perpendicular to both the vectors $$\overrightarrow a $$ and $$\overrightarrow b \,?$$
A
$$\overrightarrow c \times \overrightarrow a $$
B
$$\overrightarrow c \times \overrightarrow b $$
C
$$ - \frac{{\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{\left| {\overrightarrow a \times \overrightarrow b } \right|}}$$
D
$$\frac{{\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{\left| {\overrightarrow a \times \overrightarrow b } \right|}}$$
Answer :
$$\frac{{\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{\left| {\overrightarrow a \times \overrightarrow b } \right|}}$$
Let $$\overrightarrow c $$ is the unit vector perpendicular to both the vectors $$\overrightarrow a $$ and $$\overrightarrow b .$$
So, A unit vector which is perpendicular to both the vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ is $$\frac{{\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{\left| {\overrightarrow a \times \overrightarrow b } \right|}}$$
247.
If $$\frac{\alpha }{{\alpha '}},\,\frac{\beta }{{\beta '}},\,\frac{\gamma }{{\gamma '}}$$ are not all equal, the point of intersection of the lines $$\frac{{x - \alpha '}}{\alpha } = \frac{{y - \beta '}}{\beta } = \frac{{z - \gamma '}}{\gamma }$$ and $$\frac{{x - \alpha }}{{\alpha '}} = \frac{{y - \beta }}{{\beta '}} = \frac{{z - \gamma }}{{\gamma '}}$$ is :
From the question, the lines are not parallel.
Any point on the first line is $$\left( {\alpha ' + \alpha r,\,\beta ' + \beta r,\,\gamma ' + \gamma r} \right).$$ It is on the other line if
$$\eqalign{
& \frac{{\alpha ' + \alpha r - \alpha }}{{\alpha '}} = \frac{{\beta ' + \beta r - \beta }}{{\beta '}} = \frac{{\gamma ' + \gamma r - \gamma }}{{\gamma '}} \cr
& \Rightarrow 1 + \frac{{\alpha \left( {r - 1} \right)}}{{\alpha '}} = 1 + \frac{{\beta \left( {r - 1} \right)}}{{\beta '}} = 1 + \frac{{\gamma \left( {r - 1} \right)}}{{\gamma '}} \cr
& \Rightarrow \frac{{\alpha \left( {r - 1} \right)}}{{\alpha '}} = \frac{{\beta \left( {r - 1} \right)}}{{\beta '}} = \frac{{\gamma \left( {r - 1} \right)}}{{\gamma '}} \cr
& \Rightarrow r - 1 = 0\,\,\,\,\,\,\left( {\because \frac{\alpha }{{\alpha '}} = \frac{\beta }{{\beta '}} = \frac{\gamma }{{\gamma '}}{\text{ is not true}}} \right) \cr} $$
$$\therefore $$ the point of intersection is $$\left( {\alpha ' + \alpha .1,\,\beta ' + \beta .1,\,\gamma ' + \gamma .1} \right).$$
248.
If $$\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a$$ then $$\vec a + \vec b + \vec c = ?$$
A
$$abc$$
B
$$ - 1$$
C
$$0$$
D
$$2$$
Answer :
$$0$$
Let $$\vec a + \vec b + \vec c = \vec r.$$ Then
$$\eqalign{
& \vec a \times \left( {\vec a + \vec b + \vec c} \right) = \vec a \times \vec r \cr
& \Rightarrow 0 + \vec a \times \vec b + \vec a \times \vec c = \vec a \times \vec r \cr
& \Rightarrow \vec a \times \vec b - \vec c \times \vec a = \vec a \times \vec r \cr
& \Rightarrow \vec a \times \vec r = 0 \cr
& {\text{Similarly }}\vec b \times \vec r = \vec 0{\text{ & }}\vec c \times \vec r = \vec 0 \cr} $$
Above three conditions will be satisfied for non-zero vectors if and only if $$\vec r = \vec 0$$
249.
If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are three noncoplanar nonzero vectors then $$\left( {\overrightarrow a .\overrightarrow a } \right)\overrightarrow b \times \overrightarrow c + \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c \times \overrightarrow a + \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow a \times \overrightarrow b $$ is equal to :
A
$$\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right]\overrightarrow a $$
B
$$\left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right]\overrightarrow b $$
C
$$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow c $$
D
none of these
Answer :
$$\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right]\overrightarrow a $$
As $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are noncoplanar, $$\overrightarrow b \times \overrightarrow c ,\,\overrightarrow c \times \overrightarrow a ,\,\overrightarrow a \times \overrightarrow b $$ are also noncoplanar.
So, any vector can be expressed as a linear combination of these vectors.
$$\eqalign{
& {\text{Let }}\overrightarrow a = \lambda \overrightarrow b \times \overrightarrow c + \mu \overrightarrow c \times \overrightarrow a + \nu \overrightarrow a \times \overrightarrow b \cr
& \therefore \overrightarrow a .\overrightarrow a = \lambda \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right],\,\,\overrightarrow a .\overrightarrow b = \mu \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right],\,\,\overrightarrow a .\overrightarrow c = \nu \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] \cr
& \therefore \,\overrightarrow a = \frac{{\left( {\overrightarrow a .\overrightarrow a } \right)\overrightarrow b \times \overrightarrow c }}{{\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right]}} + \frac{{\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c \times \overrightarrow a }}{{\left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right]}} + \frac{{\left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow a \times \overrightarrow b }}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}} \cr} $$
250.
The values of $$a$$, for which points $$A,\,B,\,C$$ with position vectors $$2\hat i - \hat j + \hat k,\,\hat i - 3\hat j - 5\hat k$$ and $$a\hat i - 3\hat j + \hat k$$ respectively are the vertices of a right angled triangle with $$C = \frac{\pi }{2}$$ are :