3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

251. The shortest distance from the plane $$12x + 4y + 3z = 327$$     to the sphere $${x^2} + {y^2} + {z^2} + 4x - 2y - 6z = 155$$       is :

A $$39$$
B $$26$$
C $$11\frac{4}{{13}}$$
D $$13$$
Answer :   $$13$$

252. A variable plane at a distance of $$1$$ unit from the origin cuts the coordinate axes at $$A,\,B$$  and $$C.$$ If the centroid $$D\left( {x,\,y,\,z} \right)$$   satisfies the relation $${x^{ - 2}} + {y^{ - 2}} + {z^{ - 2}} = k$$     then the value of $$k$$ is :

A $$3$$
B $$1$$
C $$\frac{1}{3}$$
D $$9$$
Answer :   $$9$$

253. The edges of a parallelepiped are of unit length and are parallel to non-coplanar unit vectors $$\hat a,\,\hat b,\,\hat c$$   such that $$\hat a.\hat b = \,\hat b.\hat c = \hat c.\hat a = \frac{1}{2}.$$     Then, the volume of the parallelepiped is :

A $$\frac{1}{{\sqrt 2 }}$$
B $$\frac{1}{{2\sqrt 2 }}$$
C $$\frac{{\sqrt 3 }}{2}$$
D $$\frac{1}{{\sqrt 3 }}$$
Answer :   $$\frac{1}{{\sqrt 2 }}$$

254. The three concurrent edges of a parallelepiped represent the vectors $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   such that $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] = \lambda .$$    Then the volume of the parallelepiped whose three concurrent edges are the three concurrent diagonals of three faces of the given parallelepiped is :

A $$2\lambda $$
B $$3\lambda $$
C $$\lambda $$
D none of these
Answer :   $$2\lambda $$

255. If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are three vectors of equal magnitude and the angle between each pair of vectors is $$\frac{\pi }{3}$$ such that $$\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 6 $$     then $$\left| {\overrightarrow a } \right|$$ is equal to :

A $$2$$
B $$ - 1$$
C $$1$$
D $$\frac{1}{3}\sqrt 6 $$
Answer :   $$1$$

256. A unit vector perpendicular to the plane passing through the points whose position vectors are $$\overrightarrow i - \overrightarrow j + 2\overrightarrow k ,\,2\overrightarrow i - \overrightarrow k $$     and $$2\overrightarrow j + \overrightarrow k $$  is :

A $$2\overrightarrow i + \overrightarrow j + \overrightarrow k $$
B $$\frac{1}{{\sqrt 6 }}\left( {2\overrightarrow i + \overrightarrow j + \overrightarrow k } \right)$$
C $$\frac{1}{{\sqrt 6 }}\left( {\overrightarrow i + 2\overrightarrow j + \overrightarrow k } \right)$$
D none of these
Answer :   $$\frac{1}{{\sqrt 6 }}\left( {2\overrightarrow i + \overrightarrow j + \overrightarrow k } \right)$$

257. Let $$\vec a = \vec i - \vec k,\,\vec b = x\vec i + \vec j + \left( {1 - x} \right)\vec k$$       and $$\vec c = y\vec i + x\vec j + \left( {1 + x - y} \right)\vec k.$$       Then $$\left[ {\vec a\,\vec b\,\vec c} \right]$$  depends on :

A only $$x$$
B only $$y$$
C neither $$x$$ nor $$y$$
D both $$x$$ and $$y$$
Answer :   neither $$x$$ nor $$y$$

258. Let $$\vec u$$ be a vector coplanar with the vectors $$\vec a = 2\hat i + 3\hat j - \hat k$$    and $$\vec b = \hat j + \hat k.$$   If $${\vec u}$$ is perpendicular to $${\vec a}$$ and $$\vec u.\vec b - 24,$$   then $${\left| {\vec u} \right|^2}$$ is equal to :

A $$315$$
B $$256$$
C $$84$$
D $$336$$
Answer :   $$336$$

259. Let $$\vec a,\,\vec b$$  and $$\vec c$$ be three non-zero vectors such that no two of them are collinear and $$\left( {\vec a \times \vec b} \right) \times \vec c = \frac{1}{3}\left| {\vec b} \right|\left| {\vec c} \right|\vec a$$      If $$\theta $$ is the angle between vectors $${\vec b}$$ and $${\vec c},$$  then a value of $$\sin \,\theta $$  is :

A $$\frac{2}{3}$$
B $$\frac{{ - 2\sqrt 3 }}{3}$$
C $$\frac{{ 2\sqrt 2 }}{3}$$
D $$\frac{{ - \sqrt 2 }}{3}$$
Answer :   $$\frac{{ 2\sqrt 2 }}{3}$$

260. Resolved part of vector $$\overrightarrow a $$ along vector $$\overrightarrow b $$ is $${\overrightarrow a _1}$$ and that perpendicular to $$\overrightarrow b $$ is $${\overrightarrow a _2}$$ then $${\overrightarrow a _1} \times {\overrightarrow a _2}$$   is equal to :

A $$\frac{{\left( {\overrightarrow a \times \overrightarrow b } \right) . \overrightarrow b }}{{{{\left| {\overrightarrow b } \right|}^2}}}$$
B $$\frac{{\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}$$
C $$\frac{{\left( {\overrightarrow a .\overrightarrow b } \right)\left( {\overrightarrow b \times \overrightarrow a } \right)}}{{{{\left| {\overrightarrow b } \right|}^2}}}$$
D $$\frac{{\left( {\overrightarrow a .\overrightarrow b } \right)\left( {\overrightarrow b \times \overrightarrow a } \right)}}{{\left| {\overrightarrow b \times \overrightarrow a } \right|}}$$
Answer :   $$\frac{{\left( {\overrightarrow a .\overrightarrow b } \right)\left( {\overrightarrow b \times \overrightarrow a } \right)}}{{{{\left| {\overrightarrow b } \right|}^2}}}$$