3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

261. If $$\overrightarrow p $$ and $$\overrightarrow q $$ are two unit vectors inclined at an angle $$\alpha $$ to each other then $$\left| {\overrightarrow p + \overrightarrow q } \right| < 1$$   if :

A $$\frac{{2\pi }}{3} < \alpha < \frac{{4\pi }}{3}$$
B $$\frac{{4\pi }}{3} < \alpha < 2\pi $$
C $$0 < \alpha < \frac{\pi }{3}$$
D $$\alpha = \frac{\pi }{2}$$
Answer :   $$\frac{{2\pi }}{3} < \alpha < \frac{{4\pi }}{3}$$

262. In a right angle $$\Delta ABC,\,\angle A = {90^ \circ }$$    and sides $$a,\,b,\,c$$ are respectively, $$5\,cm,$$  $$4\,cm$$  and $$3\,cm.$$  If a force $$\overrightarrow F $$ has moments $$0,\,9$$  and $$16$$  in $$N\,cm$$   units respectively about vertices $$A,\,B$$  and $$C,$$ then magnitude of $$\overrightarrow F $$ is :

A $$9$$
B $$4$$
C $$5$$
D $$3$$
Answer :   $$5$$

263. Let $$a,\,b$$  and $$c$$ be distinct non-negative numbers. If the vectors $$a\hat i + a\hat j + c\hat k,\,\hat i + \hat k$$     and $$c\hat i + c\hat j + b\hat k$$   lie in a plane, then $$c$$ is :

A the Geometric Mean of $$a$$ and $$b$$
B the Arithmetic Mean of $$a$$ and $$b$$
C equal to zero
D the Harmonic Mean of $$a$$ and $$b$$
Answer :   the Geometric Mean of $$a$$ and $$b$$

264. If $$\overrightarrow a ,\,\overrightarrow b $$  are nonzero and noncollinear vectors then $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow i } \right]\overrightarrow i + \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow j } \right]\overrightarrow j + \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow k } \right]\overrightarrow k $$         is equal to :

A $$\overrightarrow a + \overrightarrow b $$
B $$\overrightarrow a \times \overrightarrow b $$
C $$\overrightarrow a - \overrightarrow b $$
D $$\overrightarrow b \times \overrightarrow a $$
Answer :   $$\overrightarrow a \times \overrightarrow b $$

265. If $$A = \left( {p,\,q,\,r} \right)$$    and $$B = \left( {p',\,q',\,r'} \right)$$    are two points on the line $$\lambda x = \mu y = \nu z$$    such that $$OA = a,\,OB = b$$    then $$pp' + qq' + rr'$$    is equal to :

A $$a + b$$
B $$ab$$
C $$\sqrt {{a^2} + {b^2}} $$
D none of these
Answer :   $$ab$$

266. A particle acted on by constant forces $$4\hat i + \hat j - 3\hat k$$   and $$3\hat i + \hat j - \hat k$$   is displaced from the point $$\hat i + 2\hat j - 3\hat k$$   to the point $$5\hat i + 4\hat j + \hat k.$$    The total work done by the forces is :

A $$50\,units$$
B $$20\, units$$
C $$30\, units$$
D $$40\, units$$
Answer :   $$40\, units$$

267. For any vector $${\overrightarrow \alpha },$$ what is $$\left( {\overrightarrow \alpha .\hat i} \right)\hat i + \left( {\overrightarrow \alpha .\hat j} \right)\hat j + \left( {\overrightarrow \alpha .\hat k} \right)\hat k$$       equal to ?

A $${\overrightarrow \alpha }$$
B $$3\overrightarrow \alpha $$
C $$ - \overrightarrow \alpha $$
D $$\overrightarrow 0 $$
Answer :   $${\overrightarrow \alpha }$$

268. If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c ,\,\overrightarrow d $$   are the position vectors of points $$A,\,B,\,C$$  and $$D$$ respectively such that $$\left( {\overrightarrow a - \overrightarrow d } \right).\left( {\overrightarrow b - \overrightarrow c } \right) = \left( {\overrightarrow b - \overrightarrow d } \right).\left( {\overrightarrow c - \overrightarrow a } \right) = 0$$           then $$D$$ is the :

A centroid of $$\Delta ABC$$
B circumcenter of $$\Delta ABC$$
C orthocenter of $$\Delta ABC$$
D None of these
Answer :   orthocenter of $$\Delta ABC$$

269. If $$C$$ is the mid point of $$AB$$  and $$P$$ is any point outside $$AB,$$  then :

A $$\overrightarrow {PA} + \overrightarrow {PB} = 2\overrightarrow {PC} $$
B $$\overrightarrow {PA} + \overrightarrow {PB} = \overrightarrow {PC} $$
C $$\overrightarrow {PA} + \overrightarrow {PB} + 2\overrightarrow {PC} = \vec 0$$
D $$\overrightarrow {PA} + \overrightarrow {PB} + \overrightarrow {PC} = \vec 0$$
Answer :   $$\overrightarrow {PA} + \overrightarrow {PB} = 2\overrightarrow {PC} $$

270. The equation of the plane bisecting the acute angle between the planes $$x - y + z - 1 = 0$$    and $$x + y + z = 2$$   is :

A $$x + z = \frac{3}{2}$$
B $$2y = 1$$
C $$x - y - z = 3$$
D none of these
Answer :   $$x + z = \frac{3}{2}$$