3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
271.
Let $$\vec a = \hat i - \hat j,\,\vec b = \hat i + \hat j + \hat k$$ and $${\vec c}$$ be a vector such that $$\vec a \times \vec c + \vec b = \vec 0$$ and $$\vec a.\vec c = 4,$$ then $${\left| {\vec c} \right|^2}$$ is equal to :
272.
Let $$O$$ be the origin and let $$PQR$$ be an arbitrary triangle. The point $$S$$ is such that $$\overrightarrow {OP} .\overrightarrow {OQ} + \overrightarrow {OR} .\overrightarrow {OS} = \overrightarrow {OR} .\overrightarrow {OP} + \overrightarrow {OQ} .\overrightarrow {OS} = \overrightarrow {OQ} .\overrightarrow {OR} + \overrightarrow {OP} .\overrightarrow {OS} $$
Then the triangle $$PQR$$ has $$S$$ as its :
273.
$$ABCDEF$$ is a regular hexagon where centre $$O$$ is the origin. If the position vectors of $$A$$ and $$B$$ are $$\hat i - \hat j + 2\hat k$$ and $$2\hat i + \hat j - \hat k$$ respectively then $$\overrightarrow {BC} $$ is equal to :