3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

271. Let $$\vec a = \hat i - \hat j,\,\vec b = \hat i + \hat j + \hat k$$      and $${\vec c}$$ be a vector such that $$\vec a \times \vec c + \vec b = \vec 0$$    and $$\vec a.\vec c = 4,$$   then $${\left| {\vec c} \right|^2}$$  is equal to :

A $$\frac{{19}}{2}$$
B $$9$$
C $$8$$
D $$\frac{{17}}{2}$$
Answer :   $$\frac{{19}}{2}$$

272. Let $$O$$ be the origin and let $$PQR$$  be an arbitrary triangle. The point $$S$$ is such that $$\overrightarrow {OP} .\overrightarrow {OQ} + \overrightarrow {OR} .\overrightarrow {OS} = \overrightarrow {OR} .\overrightarrow {OP} + \overrightarrow {OQ} .\overrightarrow {OS} = \overrightarrow {OQ} .\overrightarrow {OR} + \overrightarrow {OP} .\overrightarrow {OS} $$
Then the triangle $$PQR$$  has $$S$$ as its :

A Centroid
B Circumcenter
C Incentre
D Orthocenter
Answer :   Orthocenter

273. $$ABCDEF$$    is a regular hexagon where centre $$O$$ is the origin. If the position vectors of $$A$$ and $$B$$ are $$\hat i - \hat j + 2\hat k$$   and $$2\hat i + \hat j - \hat k$$   respectively then $$\overrightarrow {BC} $$  is equal to :

A $$\hat i + \hat j - 2\hat k$$
B $$ - \hat i + \hat j - 2\hat k$$
C $$3\hat i + 3\hat j - 4\hat k$$
D none of these
Answer :   $$ - \hat i + \hat j - 2\hat k$$