3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

21. If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are three noncoplanar vectors then $$\left[ {\overrightarrow a + \overrightarrow b + \overrightarrow c \,\,\overrightarrow a - \overrightarrow c \,\,\overrightarrow a - \overrightarrow b } \right]$$      is equal to :

A $$0$$
B $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
C $$ - 3\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
D $$2\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
Answer :   $$ - 3\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$

22. Let $$ABCD$$   be a parallelogram such that $$\overrightarrow {AB} = \vec q,\,\overrightarrow {AD} = \vec p$$    and $$\angle BAD$$   bean acute angle. If $${\vec r}$$ is the vector that coincide with the altitude directed from the vertex $$B$$ to the side $$AD,$$  then $${\vec r}$$ is given by :

A $$\vec r = 3\vec q - \frac{{\left( {\vec p.\vec q} \right)}}{{\left( {\vec p.\vec p} \right)}}\vec p$$
B $$\vec r = - \vec q + \frac{{\left( {\vec p.\vec q} \right)}}{{\left( {\vec p.\vec p} \right)}}\vec p$$
C $$\vec r = \vec q - \frac{{\left( {\vec p.\vec q} \right)}}{{\left( {\vec p.\vec p} \right)}}\vec p$$
D $$\vec r = - 3\vec q - \frac{{3\left( {\vec p.\vec q} \right)}}{{\left( {\vec p.\vec p} \right)}}\vec p$$
Answer :   $$\vec r = - \vec q + \frac{{\left( {\vec p.\vec q} \right)}}{{\left( {\vec p.\vec p} \right)}}\vec p$$

23. If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   be three vectors such that $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] = 4$$    then $$\left[ {\overrightarrow a \times \overrightarrow b \,\,\overrightarrow b \times \overrightarrow c \,\,\overrightarrow c \times \overrightarrow a } \right]$$     is equal to :

A 8
B 16
C 64
D none of these
Answer :   16

24. Consider points $$A,\,B,\,C$$   and $$D$$ with position vectors $$7\hat i - 4\hat j + 7\hat k,\,\hat i - 6\hat j + 10\hat k,\, - \hat i - 3\hat j + 4\hat k$$         and $$5\hat i - \hat j + 5\hat k$$   respectively. Then $$ABCD$$   is a :

A parallelogram but not a rhombus
B square
C rhombus
D none of these
Answer :   none of these

25. A force $${10\overrightarrow i - 5\overrightarrow j + 7\overrightarrow k }$$    displaces a particle from the point $$A$$ to the point $$B.$$ The position vectors of $$A$$ and $$B$$ are $$3\overrightarrow i - \overrightarrow j + 2\overrightarrow k $$    and $$\overrightarrow i + 3\overrightarrow j + 2\overrightarrow k $$    respectively. Then the work done is :

A 40
B 20
C 60
D none of these
Answer :   40

26. Let $$\overrightarrow r \times \overrightarrow a = \overrightarrow b \times \overrightarrow a $$    and $$\overrightarrow r .\overrightarrow c = 0,$$   where $$\overrightarrow a .\overrightarrow b \ne 0.$$   Then $$\overrightarrow r $$ is equal to :

A $$\overrightarrow b + t\overrightarrow a $$   where $$t$$ is a scalar
B $$\overrightarrow b - \frac{{\overrightarrow b .\overrightarrow c }}{{\overrightarrow a .\overrightarrow c }}\overrightarrow a $$
C $$\overrightarrow a - \overrightarrow c $$
D none of these
Answer :   $$\overrightarrow b - \frac{{\overrightarrow b .\overrightarrow c }}{{\overrightarrow a .\overrightarrow c }}\overrightarrow a $$

27. $$\overrightarrow a ,\,\overrightarrow b $$  and $$\overrightarrow c $$ are three vectors with magnitude $$\left| {\overrightarrow a } \right| = 4,\,\left| {\overrightarrow b } \right| = 4,\,\left| {\overrightarrow c } \right| = 2$$       and such that $$\overrightarrow a $$ is perpendicular to $$\left( {\overrightarrow b + \overrightarrow c } \right),\,\overrightarrow b $$   is perpendicular to $$\left( {\overrightarrow c + \overrightarrow a } \right)$$   and $$\overrightarrow c $$ is perpendicular to $$\left( {\overrightarrow a + \overrightarrow b } \right).$$   It follows that $$\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|$$    is equal to :

A 9
B 6
C 5
D 4
Answer :   6

28. Three forces $$\overrightarrow P ,\,\overrightarrow Q $$  and $$\overrightarrow R ,$$ each of 15 units, act along $$AB,\,BC$$   and $$CA$$  respectively. The position vectors of $$A,\,B$$  and $$C$$ are $$\overrightarrow {OA} = 2\overrightarrow i - \overrightarrow j + 3\overrightarrow k ,\,\overrightarrow {OB} = 5\overrightarrow i + 3\overrightarrow j - 2\overrightarrow k $$         and $$\overrightarrow {OC} = - 2\overrightarrow i + 2\overrightarrow j + 3\overrightarrow k $$     respectively. The resultant force vector is :

A $$\left( {12 + \frac{9}{{\sqrt 2 }} - 7\sqrt 3 } \right)\overrightarrow i - \left( {9 - 6\sqrt 2 + \sqrt 3 } \right)\overrightarrow j + \left( {5\sqrt 3 - \frac{{15}}{{\sqrt 2 }}} \right)\overrightarrow k $$
B $$\left( {12 + \frac{9}{{\sqrt 2 }} - 7\sqrt 3 } \right)\overrightarrow i + \left( {9 - 6\sqrt 3 + \sqrt 3 } \right)\overrightarrow j + \left( {\frac{{15}}{{\sqrt 2 }} - 5\sqrt 3 } \right)\overrightarrow k $$
C $$75\overrightarrow i + 60\overrightarrow j + 60\overrightarrow k $$
D none of these
Answer :   $$\left( {12 + \frac{9}{{\sqrt 2 }} - 7\sqrt 3 } \right)\overrightarrow i - \left( {9 - 6\sqrt 2 + \sqrt 3 } \right)\overrightarrow j + \left( {5\sqrt 3 - \frac{{15}}{{\sqrt 2 }}} \right)\overrightarrow k $$

29. Let $$\alpha ,\,\beta ,\,\gamma $$  be distinct real numbers. The points with position vectors $$\alpha \hat i + \beta \hat j + \gamma \hat k,\,\beta \hat i + \gamma \hat j + \alpha \hat k$$      and $$\gamma \hat i + \alpha \hat j + \beta \hat k$$

A are collinear
B form an equilateral triangle
C form a scalene triangle
D form a right-angled triangle
Answer :   are collinear

30. If $$\vec u,\,\vec v,\,\vec \omega $$   are non-coplanar vectors and $$p,\,q$$  are real numbers, then the equality $$\left[ {3\vec u\,p\vec v\,p\vec \omega } \right] - \left[ {p\vec v\,\vec \omega \,q\vec u} \right] - \left[ {2\vec \omega \,q\vec v\,q\vec u} \right] = 0$$        holds for :

A exactly two values of $$\left( {p,\,q} \right)$$
B more than two but not all values of $$\left( {p,\,q} \right)$$
C all values of $$\left( {p,\,q} \right)$$
D exactly one value of $$\left( {p,\,q} \right)$$
Answer :   exactly one value of $$\left( {p,\,q} \right)$$