3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
31.
$$\left[ {\overrightarrow a - \overrightarrow b \,\,\overrightarrow b - \overrightarrow c \,\,\overrightarrow c - \overrightarrow a } \right]$$ is equal to :
A
$$2\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
B
$$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
C
$$0$$
D
none of these
Answer :
$$0$$
$$\eqalign{
& \,\,\,\,\,\,\left\{ {\left( {\overrightarrow a - \overrightarrow b } \right) \times \left( {\overrightarrow b - \overrightarrow c } \right)} \right\}.\left( {\overrightarrow c - \overrightarrow a } \right) \cr
& = \left( {\overrightarrow a \times \overrightarrow b - \overrightarrow a \times \overrightarrow c + \overrightarrow b \times \overrightarrow c } \right).\left( {\overrightarrow c - \overrightarrow a } \right) \cr
& = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] - \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right] \cr
& = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] - \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] \cr
& = 0 \cr} $$
32.
The angle between the lines whose direction cosines satisfy the equations $$l + m + n = 0$$ and $${l^2} = {m^2} + {n^2}$$ is :
33.
Let $$\overrightarrow a = 2\overrightarrow i + \overrightarrow j - 2\overrightarrow k $$ and $$\overrightarrow b = \overrightarrow i + \overrightarrow j .$$ If $$\overrightarrow c $$ is a vector such that $$\overrightarrow a .\overrightarrow c = \left| {\overrightarrow c } \right|,\,\left| {\overrightarrow c - \overrightarrow a } \right| = 2\sqrt 2 $$ and the angle between $$\overrightarrow a \times \overrightarrow b $$ and $$\overrightarrow c $$ is $${30^ \circ }$$ then $$\left| {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c } \right|$$ is equal to :
A
$$\frac{2}{3}$$
B
$$\frac{3}{2}$$
C
$$2$$
D
$$3$$
Answer :
$$\frac{3}{2}$$
$$\eqalign{
& \overrightarrow a \times \overrightarrow b = \left( {2\overrightarrow i + \overrightarrow j - 2\overrightarrow k } \right) \times \left( {\overrightarrow i + \overrightarrow j } \right) = 2\overrightarrow i - 2\overrightarrow j + \overrightarrow k \cr
& \therefore \left| {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c } \right| = \left| {\overrightarrow a \times \overrightarrow b } \right|\,\left| {\overrightarrow b } \right|\sin \,{30^ \circ } \cr
& = \sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {1^2}} .\left| {\overrightarrow c } \right|.\frac{1}{2} \cr
& = \frac{3}{2}\left| {\overrightarrow c } \right| \cr
& {\text{Now, }}\left| {\overrightarrow c - \overrightarrow a } \right| = 2\sqrt 2 \,\,\,\,\,\, \Rightarrow {\left( {\overrightarrow c - \overrightarrow a } \right)^2} = 8 \cr
& {\text{or }}{\left| {\overrightarrow c } \right|^2} + {\left| {\overrightarrow a } \right|^2} - 2\overrightarrow c .\overrightarrow a = 8 \cr
& {\text{or }}{\left| {\overrightarrow c } \right|^2} + {\left( {\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} } \right)^2} - 2\left| {\overrightarrow c } \right| = 8 \cr
& {\text{or }}{\left| {\overrightarrow c } \right|^2} - 2\left| {\overrightarrow c } \right| + 1 = 0 \cr
& \therefore \,\,\left| {\overrightarrow c } \right| = 1 \cr
& \therefore \,\left| {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c } \right| = \left| {\overrightarrow a \times \overrightarrow b } \right|\,\left| {\overrightarrow c } \right|\sin \,{30^ \circ } = \frac{3}{2} \cr} $$
34.
Let $$\vec u,\,\vec v,\,\vec w$$ be such that $$\left| {\vec u} \right| = 1,\,\left| {\vec v} \right| = 2,\,\left| {\vec w} \right| = 3.$$ If the projection $${\vec v}$$ along $${\vec u}$$ is equal to that of $${\vec w}$$ along $${\vec u}$$ and
$$\vec v,\,\vec w$$ are perpendicular to each other then $$\left| {\vec u - \vec v + \vec w} \right|$$ equals :
A
$$14$$
B
$$\sqrt 7 $$
C
$$\sqrt 14 $$
D
$$2$$
Answer :
$$\sqrt 14 $$
Projection of $${\vec v}$$ along $$\vec u = \frac{{\vec v.\vec u}}{{\left| {\vec u} \right|}} = \frac{{\vec v.\vec u}}{2}$$
projection of $${\vec w}$$ along $$\vec u = \frac{{\vec w.\vec u}}{{\left| {\vec u} \right|}} = \frac{{\vec w.\vec u}}{2}$$
$$\eqalign{
& {\text{Given }}\frac{{\vec v.\vec u}}{2} = \frac{{\vec w.\vec u}}{2}.....(1) \cr
& {\text{Also,}}\,\,{\text{ }}\vec v.\,\vec w = 0.....(2) \cr
& {\text{Now }}\,\,{\text{ }}{\left| {\vec u - \vec v + \vec w} \right|^2} \cr
& = {\left| {\vec u} \right|^2} + {\left| {\vec v} \right|^2} + {\left| {\vec w} \right|^2} - 2\vec u.\vec v - 2\vec v.\vec w + 2\vec u.\vec w \cr
& = 1 + 4 + 9 + 0\,\,\,\,\,\,\left[ {{\text{ From equation (1) and (2)}}} \right] \cr
& = 14 \cr
& \therefore \,\left| {\vec u - \vec v + \vec w} \right| = \sqrt {14} \, \cr} $$
35.
The point $$A\left( {3,\, - 2,\,4} \right)$$ is shifted parallel to the line $$\frac{x}{{\sqrt 3 }} = \frac{{y - 1}}{2} = \frac{{z + 1}}{3}$$ by a
distance $$1$$. The coordinates of $$P$$ in the new position are :
A
$$\left( {\frac{{12 - \sqrt 3 }}{4},\, - \frac{5}{2},\,\frac{{13}}{4}} \right)$$
Direction cosines of the line are $$\frac{{\sqrt 3 }}{4},\,\frac{2}{4},\,\frac{3}{4}.$$ So, $$P = \left( {3 \pm 1.\frac{{\sqrt 3 }}{4}, - 2 \pm 1.\,\frac{2}{4},4 \pm 1.\,\frac{3}{4}} \right)$$
$$\therefore \,\,P = \left( {3 \pm \frac{{\sqrt 3 }}{4}, - 2 \pm \,\frac{1}{2},4 \pm \,\frac{3}{4}} \right)$$
36.
If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are three noncoplanar nonzero vectors and $$\overrightarrow r $$ is any vector in space then $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow r \times \overrightarrow c } \right) + \left( {\overrightarrow b \times \overrightarrow c } \right) \times \left( {\overrightarrow r \times \overrightarrow a } \right) + \left( {\overrightarrow c \times \overrightarrow a } \right) \times \left( {\overrightarrow r \times \overrightarrow b } \right)$$ is equal to :
A
$$2\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r $$
B
$$3\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r $$
C
$$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r $$
D
none of these
Answer :
$$2\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r $$
$$\eqalign{
& \left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow r \times \overrightarrow c } \right) = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r - \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow r } \right]\overrightarrow c ......\left( 1 \right) \cr
& \left( {\overrightarrow b \times \overrightarrow c } \right) \times \left( {\overrightarrow r \times \overrightarrow a } \right) = \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right]\overrightarrow r - \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow r } \right]\overrightarrow a \cr
& \left( {\overrightarrow c \times \overrightarrow a } \right) \times \left( {\overrightarrow r \times \overrightarrow b } \right) = \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right]\overrightarrow r - \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow r } \right]\overrightarrow b \cr} $$
$$\therefore $$ the expression $$ = 3\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r - \left\{ {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow r } \right]\overrightarrow c + \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow r } \right]\overrightarrow a + \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow r } \right]\overrightarrow b } \right\}......\left( 2 \right)$$
Again, $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow r \times \overrightarrow c } \right) = \left[ {\overrightarrow a \,\,\overrightarrow r \,\,\overrightarrow c } \right]\overrightarrow b - \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow r } \right]\overrightarrow a ......\left( 3 \right)$$
From (1) and (3), $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r - \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow r } \right]\overrightarrow c = \left[ {\overrightarrow a \,\,\overrightarrow r \,\,\overrightarrow c } \right]\overrightarrow b - \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow r } \right]\overrightarrow a $$
$$\therefore \,\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow r } \right]\overrightarrow c + \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow r } \right]\overrightarrow b + \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow r } \right]\overrightarrow a $$
$$\therefore $$ from (2), the expression $$ = 3\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r - \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r = 2\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r .$$
37.
The upper $${\frac{3}{4}^{th}}$$ portion of a vertical pole subtends an angle $${\tan ^{ - 1}}\frac{3}{5}$$ at a point in the horizontal plane through its foot and at a distance $$40\,m$$ from the foot. A possible height of the vertical pole is :
38.
$$\vec a,\,\vec b,\,\vec c$$ are 3 vectors, such that $$\vec a + \vec b + \vec c = 0,\,\,\left| {\vec a} \right| = 1,\,\left| {\vec b} \right| = 2,\,\left| {\vec c} \right| = 3,$$ then $$\vec a.\vec b + \vec b.\vec c + \vec c.\vec a$$ is equal to :
A
$$1$$
B
$$0$$
C
$$ - 7$$
D
$$7$$
Answer :
$$ - 7$$
$$\eqalign{
& \vec a + \vec b + \vec c = 0\,\, \Rightarrow \left( {\vec a + \vec b + \vec c} \right).\left( {\vec a + \vec b + \vec c} \right) = 0 \cr
& {\left| {\vec a} \right|^2} + \,{\left| {\vec b} \right|^2} + \,{\left| {\vec c} \right|^2} + 2\left( {\vec a.\vec b + \vec b.\vec c + \vec c.\vec a} \right) = 0 \cr
& \vec a.\vec b + \vec b.\vec c + \vec c.\vec a = \frac{{ - 1 - 4 - 9}}{2} = - 7 \cr} $$
39.
Two systems of rectangular axes have the same origin. If a plane cuts them at distances $$a,\,b,\,c$$ and $$a',\,b',\,c'$$ from the origin then :
The length of the perpendicular to the plane $$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$ from the origin $$ = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} }}.$$
The length of the perpendicular to the plane $$\frac{{x'}}{{a'}} + \frac{{y'}}{{b'}} + \frac{{z'}}{{c'}} = 1$$ from the origin (the same point) $$ = \frac{1}{{\sqrt {\frac{1}{{a{'^2}}} + \frac{1}{{b{'^2}}} + \frac{1}{{c{'^2}}}} }}.$$
These are equal. So $$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{1}{{a{'^2}}} + \frac{1}{{b{'^2}}} + \frac{1}{{c{'^2}}}.$$
40.
If $$\overrightarrow a .\overrightarrow b = 0$$ and $$\overrightarrow a + \overrightarrow b $$ makes an angle of $${60^ \circ }$$ with $$\overrightarrow a ,$$ then :
A
$$\left| {\overrightarrow a } \right| = 2\left| {\overrightarrow b } \right|$$
B
$$2\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right|$$
C
$$\left| {\overrightarrow a } \right| = \sqrt 3 \left| {\overrightarrow b } \right|$$
D
$$\left| {\overrightarrow b } \right| = \sqrt 3 \left| {\overrightarrow a } \right|$$
Answer :
$$\left| {\overrightarrow b } \right| = \sqrt 3 \left| {\overrightarrow a } \right|$$
$$\eqalign{
& \left( {\overrightarrow a + \overrightarrow b } \right).\overrightarrow a = \left| {\overrightarrow a + \overrightarrow b } \right|\left| {\overrightarrow a } \right|\cos \,{60^ \circ } \cr
& \Rightarrow \cos \,{60^ \circ } = \frac{1}{2} = \frac{{\left( {\overrightarrow a + \overrightarrow b } \right).\overrightarrow a }}{{\left| {\overrightarrow a + \overrightarrow b } \right|\left| {\overrightarrow a } \right|}} \cr
& \Rightarrow \frac{1}{2} = \frac{{{{\left| {\overrightarrow a } \right|}^2}}}{{\left| {\overrightarrow a + \overrightarrow b } \right|\left| {\overrightarrow a } \right|}} \cr
& \Rightarrow \frac{1}{2} = \frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow a + \overrightarrow b } \right|}}......\left( 1 \right) \cr
& \left\{ {{\text{as }}\overrightarrow a .\overrightarrow b = 0,\,\overrightarrow a \bot \overrightarrow b } \right\} \cr} $$
$$\eqalign{
& \left( {\overrightarrow a + \overrightarrow b } \right).\overrightarrow b = \left| {\overrightarrow a + \overrightarrow b } \right|\left| {\overrightarrow b } \right|\cos \,{30^ \circ } \cr
& \Rightarrow \cos \,{30^ \circ } = \frac{{\sqrt 3 }}{2} = \frac{{\left( {\overrightarrow a + \overrightarrow b } \right).\left( {\overrightarrow b } \right)}}{{\left| {\overrightarrow a + \overrightarrow b } \right|\left| {\overrightarrow b } \right|}} \cr
& \Rightarrow \frac{{\sqrt 3 }}{2} = \frac{{{{\left| {\overrightarrow b } \right|}^2}}}{{\left| {\overrightarrow a + \overrightarrow b } \right|\left| {\overrightarrow b } \right|}} \cr
& \Rightarrow \frac{{\sqrt 3 }}{2} = \frac{{\left| {\overrightarrow b } \right|}}{{\left| {\overrightarrow a + \overrightarrow b } \right|}}......\left( 2 \right) \cr
& {\text{Dividing}}\left( 2 \right){\text{ by}}\left( 1 \right)\,: \cr
& \frac{{\frac{{\sqrt 3 }}{2}}}{{\frac{1}{2}}} = \frac{{\left| {\overrightarrow b } \right|}}{{\left| {\overrightarrow a } \right|}} \cr
& \Rightarrow \sqrt 3 = \frac{{\left| {\overrightarrow b } \right|}}{{\left| {\overrightarrow a } \right|}} \cr
& \Rightarrow \left| {\overrightarrow b } \right| = \sqrt 3 \left| {\overrightarrow a } \right| \cr} $$