3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

31. $$\left[ {\overrightarrow a - \overrightarrow b \,\,\overrightarrow b - \overrightarrow c \,\,\overrightarrow c - \overrightarrow a } \right]$$     is equal to :

A $$2\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
B $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
C $$0$$
D none of these
Answer :   $$0$$

32. The angle between the lines whose direction cosines satisfy the equations $$l + m + n = 0$$    and $${l^2} = {m^2} + {n^2}$$   is :

A $$\frac{\pi }{6}$$
B $$\frac{\pi }{2}$$
C $$\frac{\pi }{3}$$
D $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{3}$$

33. Let $$\overrightarrow a = 2\overrightarrow i + \overrightarrow j - 2\overrightarrow k $$    and $$\overrightarrow b = \overrightarrow i + \overrightarrow j .$$   If $$\overrightarrow c $$ is a vector such that $$\overrightarrow a .\overrightarrow c = \left| {\overrightarrow c } \right|,\,\left| {\overrightarrow c - \overrightarrow a } \right| = 2\sqrt 2 $$       and the angle between $$\overrightarrow a \times \overrightarrow b $$  and $$\overrightarrow c $$ is $${30^ \circ }$$ then $$\left| {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c } \right|$$     is equal to :

A $$\frac{2}{3}$$
B $$\frac{3}{2}$$
C $$2$$
D $$3$$
Answer :   $$\frac{3}{2}$$

34. Let $$\vec u,\,\vec v,\,\vec w$$   be such that $$\left| {\vec u} \right| = 1,\,\left| {\vec v} \right| = 2,\,\left| {\vec w} \right| = 3.$$      If the projection $${\vec v}$$ along $${\vec u}$$ is equal to that of $${\vec w}$$ along $${\vec u}$$ and $$\vec v,\,\vec w$$  are perpendicular to each other then $$\left| {\vec u - \vec v + \vec w} \right|$$   equals :

A $$14$$
B $$\sqrt 7 $$
C $$\sqrt 14 $$
D $$2$$
Answer :   $$\sqrt 14 $$

35. The point $$A\left( {3,\, - 2,\,4} \right)$$   is shifted parallel to the line $$\frac{x}{{\sqrt 3 }} = \frac{{y - 1}}{2} = \frac{{z + 1}}{3}$$     by a distance $$1$$. The coordinates of $$P$$ in the new position are :

A $$\left( {\frac{{12 - \sqrt 3 }}{4},\, - \frac{5}{2},\,\frac{{13}}{4}} \right)$$
B $$\left( {3 + \sqrt 3 ,\,3,\,2} \right)$$
C $$\left( {3 - \sqrt 3 ,\, - 1,\, - 4} \right)$$
D none of these
Answer :   $$\left( {\frac{{12 - \sqrt 3 }}{4},\, - \frac{5}{2},\,\frac{{13}}{4}} \right)$$

36. If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are three noncoplanar nonzero vectors and $$\overrightarrow r $$ is any vector in space then $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow r \times \overrightarrow c } \right) + \left( {\overrightarrow b \times \overrightarrow c } \right) \times \left( {\overrightarrow r \times \overrightarrow a } \right) + \left( {\overrightarrow c \times \overrightarrow a } \right) \times \left( {\overrightarrow r \times \overrightarrow b } \right)$$               is equal to :

A $$2\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r $$
B $$3\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r $$
C $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r $$
D none of these
Answer :   $$2\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r $$

37. The upper $${\frac{3}{4}^{th}}$$ portion of a vertical pole subtends an angle $${\tan ^{ - 1}}\frac{3}{5}$$   at a point in the horizontal plane through its foot and at a distance $$40\,m$$  from the foot. A possible height of the vertical pole is :

A $$80\,m$$
B $$20\,m$$
C $$40\,m$$
D $$60\,m$$
Answer :   $$40\,m$$

38. $$\vec a,\,\vec b,\,\vec c$$  are 3 vectors, such that $$\vec a + \vec b + \vec c = 0,\,\,\left| {\vec a} \right| = 1,\,\left| {\vec b} \right| = 2,\,\left| {\vec c} \right| = 3,$$        then $$\vec a.\vec b + \vec b.\vec c + \vec c.\vec a$$    is equal to :

A $$1$$
B $$0$$
C $$ - 7$$
D $$7$$
Answer :   $$ - 7$$

39. Two systems of rectangular axes have the same origin. If a plane cuts them at distances $$a,\,b,\,c$$   and $$a',\,b',\,c'$$   from the origin then :

A $${a^{ - 2}} + {b^{ - 2}} - {c^{ - 2}} + a{'^{ - 2}} + b{'^{ - 2}} - c{'^{ - 2}} = 0$$
B $${a^{ - 2}} - {b^{ - 2}} - {c^{ - 2}} + a{'^{ - 2}} - b{'^{ - 2}} - c{'^{ - 2}} = 0$$
C $${a^{ - 2}} + {b^{ - 2}} + {c^{ - 2}} - a{'^{ - 2}} - b{'^{ - 2}} - c{'^{ - 2}} = 0$$
D none of these
Answer :   $${a^{ - 2}} + {b^{ - 2}} + {c^{ - 2}} - a{'^{ - 2}} - b{'^{ - 2}} - c{'^{ - 2}} = 0$$

40. If $$\overrightarrow a .\overrightarrow b = 0$$   and $$\overrightarrow a + \overrightarrow b $$  makes an angle of $${60^ \circ }$$  with $$\overrightarrow a ,$$ then :

A $$\left| {\overrightarrow a } \right| = 2\left| {\overrightarrow b } \right|$$
B $$2\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right|$$
C $$\left| {\overrightarrow a } \right| = \sqrt 3 \left| {\overrightarrow b } \right|$$
D $$\left| {\overrightarrow b } \right| = \sqrt 3 \left| {\overrightarrow a } \right|$$
Answer :   $$\left| {\overrightarrow b } \right| = \sqrt 3 \left| {\overrightarrow a } \right|$$