3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
41.
Three vertices of a tetrahedron are $$\left( {0,\,0,\,0} \right)\left( {6,\, - 5,\, - 1} \right)$$ and $$\left( { - 4,\,1,\,3} \right).$$ If the centroid of the tetrahedron be $$\left( {1,\, - 2,\,5} \right)$$ then the fourth vertex is :
A
$$\left( {2,\, - 4,\,18} \right)$$
B
$$\left( {2,\, - 4,\, - 18} \right)$$
C
$$\left( {\frac{3}{4},\,\frac{{ - 3}}{2},\,\frac{7}{4}} \right)$$
42.
If $$\left[ {\vec a \times \vec b\,\,\vec b \times \vec c\,\,\vec c \times \vec a} \right] = \lambda {\left[ {\vec a\,\vec b\,\vec c} \right]^2}$$ then $$\lambda $$ is equal to :
43.
If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are any three vectors such that $$\left( {\overrightarrow a + \overrightarrow b } \right).\overrightarrow c = \left( {\overrightarrow a - \overrightarrow b } \right).\overrightarrow c = 0$$ then $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c $$ is :
A
$$\overrightarrow 0 $$
B
$$\overrightarrow a $$
C
$$\overrightarrow b $$
D
none of these
Answer :
$$\overrightarrow 0 $$
$$\eqalign{
& \left( {\overrightarrow a + \overrightarrow b } \right).\overrightarrow c = \left( {\overrightarrow a - \overrightarrow b } \right).\overrightarrow c = 0\,\,\,\,\, \Rightarrow \overrightarrow a .\overrightarrow c = \overrightarrow b .\overrightarrow c = 0 \cr
& \therefore \,\overrightarrow c \bot \overrightarrow a {\text{ as well as }}\overrightarrow b \cr
& \therefore \,\overrightarrow c ||\overrightarrow a \times \overrightarrow b .{\text{ Hence, }}\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow a = \overrightarrow 0 . \cr} $$
44.
The distance of the point $$\left( {1,\,1,\,1} \right)$$ from the plane passing through the points $$\left( {2,{\mkern 1mu} 1,{\mkern 1mu} 1} \right),\,\left( {1,{\mkern 1mu} 2,{\mkern 1mu} 1} \right)$$ and $$\left( {1,\,1,\,2} \right)$$ is :
A
$$\frac{1}{{\sqrt 3 }}$$
B
$$1$$
C
$$\sqrt 3 $$
D
none of these
Answer :
$$\frac{1}{{\sqrt 3 }}$$
$$\eqalign{
& \overrightarrow {AP} = \overrightarrow {OP} - \overrightarrow {OA} \cr
& = \left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right) - \left( {2\overrightarrow i + \overrightarrow j + \overrightarrow k } \right) = - \overrightarrow i \cr
& \overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \cr
& = \left( {\overrightarrow i + 2\overrightarrow j + \overrightarrow k } \right) - \left( {2\overrightarrow i + \overrightarrow j + \overrightarrow k } \right) = - \overrightarrow i + \overrightarrow j \cr
& \overrightarrow {AC} = \overrightarrow {OC} - \overrightarrow {OA} \cr
& = \left( {\overrightarrow i + \overrightarrow j + 2\overrightarrow k } \right) - \left( {2\overrightarrow i + \overrightarrow j + \overrightarrow k } \right) = - \overrightarrow i + \overrightarrow k \cr
& \overrightarrow {AC} \times \overrightarrow {AB} = \left( { - \overrightarrow i + \overrightarrow k } \right) \times \left( { - \overrightarrow i + \overrightarrow j } \right) = - \overrightarrow k - \overrightarrow j - \overrightarrow i \cr} $$
$$\therefore $$ unit vector perpendicular to the plane $$ABC = \frac{{ - \overrightarrow k - \overrightarrow j - \overrightarrow i }}{{\sqrt 3 }}$$
The required distance $$ = \overrightarrow {AP} .\frac{{ - \overrightarrow k - \overrightarrow j - \overrightarrow i }}{{\sqrt 3 }} = \left( { - \overrightarrow i } \right).\frac{{ - \overrightarrow k - \overrightarrow j - \overrightarrow i }}{{\sqrt 3 }} = \frac{1}{{\sqrt 3 }}$$
45.
$$\overrightarrow i \times \left( {\overrightarrow a \times \overrightarrow i } \right) + \overrightarrow j \times \left( {\overrightarrow a \times \overrightarrow j } \right) + \overrightarrow k \times \left( {\overrightarrow a \times \overrightarrow k } \right)$$ is equal to :
A
$$2\overrightarrow a $$
B
$$3\overrightarrow a $$
C
$$\overrightarrow 0 $$
D
none of these
Answer :
$$2\overrightarrow a $$
$$\eqalign{
& {\text{Expression}} = \left( {\overrightarrow i .\overrightarrow i } \right)\overrightarrow a - \left( {\overrightarrow i .\overrightarrow a } \right)\overrightarrow i + \left( {\overrightarrow j .\overrightarrow j } \right)\overrightarrow a - \left( {\overrightarrow j .\overrightarrow a } \right)\overrightarrow j + \left( {\overrightarrow k .\overrightarrow k } \right)\overrightarrow a - \left( {\overrightarrow k .\overrightarrow a } \right)\overrightarrow k \cr
& = 3\overrightarrow a - \left\{ {\left( {\overrightarrow i .\overrightarrow a } \right)\overrightarrow i + \left( {\overrightarrow j .\overrightarrow a } \right)\overrightarrow j + \left( {\overrightarrow k .\overrightarrow a } \right)\overrightarrow k } \right\} \cr
& = 3\overrightarrow a - \overrightarrow a \cr
& = 2\overrightarrow a \cr} $$
46.
The unit vector perpendicular to both the vectors $$\overrightarrow a = \overrightarrow i + \overrightarrow j + \overrightarrow k $$ and $$\overrightarrow b = 2\overrightarrow i - \overrightarrow j + 3\overrightarrow k $$ and making an acute angle with the vector $$\overrightarrow k $$ is :
A
$$ - \frac{1}{{\sqrt {26} }}\left( {4\overrightarrow i - \overrightarrow j - 3\overrightarrow k } \right)$$
B
$$\frac{1}{{\sqrt {26} }}\left( {4\overrightarrow i - \overrightarrow j - 3\overrightarrow k } \right)$$
C
$$\frac{1}{{\sqrt {26} }}\left( {4\overrightarrow i - \overrightarrow j + 3\overrightarrow k } \right)$$
D
none of these
Answer :
$$ - \frac{1}{{\sqrt {26} }}\left( {4\overrightarrow i - \overrightarrow j - 3\overrightarrow k } \right)$$
The unit vector $$ = \pm \frac{{\overrightarrow a \times \overrightarrow b }}{{\left| {\overrightarrow a \times \overrightarrow b } \right|}} = \pm \frac{{4\overrightarrow i - \overrightarrow j - 3\overrightarrow k }}{{\sqrt {{4^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 3} \right)}^2}} }} = \pm \frac{1}{{\sqrt {26} }}\left( {4\overrightarrow i - \overrightarrow j - 3\overrightarrow k } \right).$$
Now, $$\overrightarrow k .\frac{{ \pm 1}}{{\sqrt {26} }}\left( {4\overrightarrow i - \overrightarrow j - 3\overrightarrow k } \right) = \frac{{ \pm 1}}{{\sqrt {26} }}\left( { - 3} \right).$$
$$\therefore $$ for acute angle the unit vector $$ = - \frac{1}{{\sqrt {26} }}\left( {4\overrightarrow i - \overrightarrow j - 3\overrightarrow k } \right).$$
47.
Let $$\overrightarrow a ,\,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-zero vectors such that no two of these are collinear. If the vector $$\overrightarrow a + 2\overrightarrow b $$ is collinear with $$\overrightarrow c $$ and $$\overrightarrow b + 3\overrightarrow c $$ is collinear with $$\overrightarrow a $$ ($$\lambda $$ being some non-zero scalar) then $$\overrightarrow a + 2\overrightarrow b + 6\overrightarrow c $$ equals :
A
$$0$$
B
$$\lambda \overrightarrow b $$
C
$$\lambda \overrightarrow c $$
D
$$\lambda \overrightarrow a $$
Answer :
$$\lambda \overrightarrow c $$
Let $$\overrightarrow a + 2\overrightarrow b = t\overrightarrow c $$ and $$\overrightarrow b + 3\overrightarrow c = s\overrightarrow a ,$$ where $$t$$ and $$s$$ are scalars. Adding, we get
$$\eqalign{
& \overrightarrow a + 3\overrightarrow b + 3\overrightarrow c = t\overrightarrow c + s\overrightarrow a \cr
& \Rightarrow \overrightarrow a + 2\overrightarrow b + 6\overrightarrow c = t\overrightarrow c + s\overrightarrow a - \overrightarrow b + 3\overrightarrow c \cr
& \Rightarrow \overrightarrow a + 2\overrightarrow b + 6\overrightarrow c = t\overrightarrow c + \left( {\overrightarrow b + 3\overrightarrow c } \right) - \overrightarrow b + 3\overrightarrow c \cr
& \Rightarrow \overrightarrow a + 2\overrightarrow b + 6\overrightarrow c = \left( {t + 6} \right)\overrightarrow c \,\,\,\,\,\,\,\,\,\,\left[ {{\text{using }}s\overrightarrow a = \overrightarrow b + 3\overrightarrow c } \right] \cr
& \Rightarrow \overrightarrow a + 2\overrightarrow b + 6\overrightarrow c = \lambda \overrightarrow c ,{\text{ where }}\lambda = t + 6 \cr} $$
48.
If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are the position vectors of corners $$A,\,B,\,C$$ of a parallelogram $$ABCD,$$ then what is the position vector of the corner $$D\,?$$
A
$$\overrightarrow a + \overrightarrow b + \overrightarrow c $$
B
$$\overrightarrow a + \overrightarrow b - \overrightarrow c $$
C
$$\overrightarrow a - \overrightarrow b + \overrightarrow c $$
D
$$ - \overrightarrow a + \overrightarrow b + \overrightarrow c $$
Answer :
$$\overrightarrow a - \overrightarrow b + \overrightarrow c $$
Let $$O$$ be the origin and $$ABCD$$ be the parallelogram.
$$\eqalign{
& \ln \,\Delta ODC, \cr
& \overrightarrow {OD} = \overrightarrow {OC} + \overrightarrow {CD} \cr
& \overrightarrow {CD} = - \overrightarrow {AB} \cr
& {\text{and, }}\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \,\,\left[ {\ln \,\Delta AOB} \right] \cr
& = \overrightarrow b - \overrightarrow a \cr
& {\text{Thus, }}\overrightarrow {CD} = - \overrightarrow {AB} = \overrightarrow a - \overrightarrow b \cr} $$
$$\eqalign{
& {\text{So, }}\overrightarrow {OD} = \overrightarrow c + \overrightarrow a - \overrightarrow b \cr
& \left[ {{\text{since, }}\overrightarrow {OC} = \overrightarrow C {\text{ and }}\overrightarrow {CD} = \overrightarrow a - \overrightarrow b } \right] \cr} $$
49.
For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$ holds if and only if -
A
$$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B
$$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C
$$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D
$$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Answer :
$$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
50.
If $$\overrightarrow a ||\overrightarrow b \times \overrightarrow c $$ then $$\left( {\overrightarrow a \times \overrightarrow b } \right).\left( {\overrightarrow a \times \overrightarrow c } \right)$$ is equal to :
A
$${\overrightarrow a ^2}\left( {\overrightarrow b .\overrightarrow c } \right)$$
B
$${\overrightarrow b ^2}\left( {\overrightarrow a .\overrightarrow c } \right)$$
C
$${\overrightarrow c ^2}\left( {\overrightarrow a .\overrightarrow b } \right)$$
D
none of these
Answer :
$${\overrightarrow a ^2}\left( {\overrightarrow b .\overrightarrow c } \right)$$
$$\overrightarrow a ||\left( {\overrightarrow b \times \overrightarrow c } \right)\,\,\, \Rightarrow \overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = 0\,\,\, \Rightarrow \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b = \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c $$
But $${\overrightarrow b }$$ is not collinear with $${\overrightarrow c }.$$ So, $$\overrightarrow a .\overrightarrow c = 0{\text{ and }}\overrightarrow a .\overrightarrow b = 0$$
Now, \[\left( {\overrightarrow a \times \overrightarrow b } \right).\left( {\overrightarrow a \times \overrightarrow c } \right) = \left| \begin{array}{l}
\overrightarrow a .\overrightarrow a \,\,\,\,\,\overrightarrow a .\overrightarrow c \\
\overrightarrow b .\overrightarrow a \,\,\,\,\,\overrightarrow b .\overrightarrow c
\end{array} \right| = \left| \begin{array}{l}
\overrightarrow a .\overrightarrow a \,\,\,\,\,0\\
0\,\,\,\,\,\,\overrightarrow b .\overrightarrow c
\end{array} \right| = {\overrightarrow a ^2}\left( {\overrightarrow b .\overrightarrow c } \right).\]