3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

51. $$\vec a = 3\hat i - 5\hat j$$   and $$\vec b = 6\hat i + 3\hat j$$   are two vectors and $${\vec c}$$ is a vector such that $$\vec c = \vec a \times \vec b$$   then $$\left| {\vec a} \right|:\left| {\vec b} \right|:\left| {\vec c} \right| = ?$$

A $$\sqrt {34} :\sqrt {45} :\sqrt {39} $$
B $$\sqrt {34} :\sqrt {45} :39$$
C $$34:39:45$$
D $$39:35:34$$
Answer :   $$\sqrt {34} :\sqrt {45} :39$$

52. If the lines $$\frac{{x + 2}}{{4\lambda + 1}} = \frac{{y - 1}}{4} = \frac{z}{{ - 18}}$$      and $$\frac{x}{{ - 3}} = \frac{{y + 1}}{{5\mu - 3}} = \frac{{z - 1}}{6}$$      are parallel to each other then the value of the pair $$\left( {\lambda ,\,\mu } \right)$$  is :

A $$\left( { - 2,\,\frac{1}{3}} \right)$$
B $$\left( {2,\, - \frac{1}{3}} \right)$$
C $$\left( {2,\,\frac{1}{3}} \right)$$
D cannot be found
Answer :   $$\left( {2,\,\frac{1}{3}} \right)$$

53. The vectors $$\hat i - 2x\hat j - 3y\hat k$$    and $$\hat i + 3x\hat j + 2y\hat k$$    are orthogonal to each other. Then the locus of the point $$\left( {x,\,y} \right)$$  is :

A hyperbola
B ellipse
C parabola
D circle
Answer :   circle

54. If the vectors $$\vec a = \hat i - \hat j + 2\hat k,\,\vec b = 2\hat i + 4\hat j + \,\hat k$$       and $$\vec c = \lambda \hat i + \hat j + \mu \hat k$$    are mutually orthogonal, then $$\left( {\lambda ,\,\mu } \right) = ?$$

A $$\left( {2,\, - 3} \right)$$
B $$\left( { - 2,\, 3} \right)$$
C $$\left( {3,\, - 2} \right)$$
D $$\left( { - 3,\, 2} \right)$$
Answer :   $$\left( { - 3,\, 2} \right)$$

55. If $$\vec a,\,\vec b$$  and $$\vec c$$ are three non coplanar vectors, then $$\left( {\vec a + \vec b + \vec c} \right).\left[ {\left( {\vec a + \vec b} \right) \times \left( {\vec a + \vec c} \right)} \right]$$       equals :

A $$0$$
B $$\left[ {\vec a\,\vec b\,\vec c} \right]$$
C $$2\left[ {\vec a\,\vec b\,\vec c} \right]$$
D $$ - \left[ {\vec a\,\vec b\,\vec c} \right]$$
Answer :   $$ - \left[ {\vec a\,\vec b\,\vec c} \right]$$

56. What is a vector of unit length orthogonal to both the vectors $$\hat i + \hat j + \hat k$$    and $$2\hat i + 3\hat j - \hat k\,?$$

A $$\frac{{ - 4\hat i + 3\hat j - \hat k}}{{\sqrt {26} }}$$
B $$\frac{{ - 4\hat i + 3\hat j + \hat k}}{{\sqrt {26} }}$$
C $$\frac{{ - 3\hat i + 2\hat j - \hat k}}{{\sqrt {14} }}$$
D $$\frac{{ - 3\hat i + 2\hat j + \hat k}}{{\sqrt {14} }}$$
Answer :   $$\frac{{ - 4\hat i + 3\hat j + \hat k}}{{\sqrt {26} }}$$

57. Let $$\vec V = 2\vec i + \vec j - \vec k$$    and $$\vec W = \vec i + 3\vec k.$$   If $${\vec U}$$ is a unit vector, then the maximum value of the scalar triple product $$\left| {\vec U\vec V\vec W} \right|$$   is :

A $$-1$$
B $$\sqrt {10} + \sqrt 6 $$
C $$\sqrt {59} $$
D $$\sqrt {60} $$
Answer :   $$\sqrt {59} $$

58. Let $$\overrightarrow {{r_1}} ,\,\overrightarrow {{r_2}} ,\,\overrightarrow {{r_3}} ,.....,\overrightarrow {{r_n}} ,$$     be the position vectors of points $${P_1},\,{P_2},\,{P_3},.....,\,{P_n}$$     relative to the origin $$O.$$ If the vector equation $${a_1}\overrightarrow {{r_1}} + {a_2}\overrightarrow {{r_2}} + ..... + {a_n}\overrightarrow {{r_n}} = 0$$       holds, then a similar equation will also hold w.r.t. to any other origin provided :

A $${a_1} + {a_2} + ..... + {a_n} = n$$
B $${a_1} + {a_2} + ..... + {a_n} = 1$$
C $${a_1} + {a_2} + ..... + {a_n} = 0$$
D $${a_1} = {a_2} = {a_3} = ..... = {a_n} = 0$$
Answer :   $${a_1} + {a_2} + ..... + {a_n} = 0$$

59. The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A $$a = - 40$$
B $$a = 40$$
C $$a = 20$$
D none of these
Answer :   $$a = - 40$$

60. The direction cosines of the projection of the line $$\frac{x}{{ - 2}} = \frac{{y - 1}}{1} = \frac{{z + 1}}{{ - 1}}$$     on the plane $$2x + y - 3z = 5$$    are :

A $$2,\, - 1,\,1$$
B $$\frac{2}{7},\,\frac{{ - 1}}{7},\,\frac{1}{7}$$
C $$\frac{{ - 2}}{{\sqrt 6 }},\,\frac{1}{{\sqrt 6 }},\,\frac{{ - 1}}{{\sqrt 6 }}$$
D $$\frac{2}{{\sqrt 6 }},\,\frac{{ - 1}}{{\sqrt 6 }},\,\frac{1}{{\sqrt 6 }}$$
Answer :   $$\frac{2}{{\sqrt 6 }},\,\frac{{ - 1}}{{\sqrt 6 }},\,\frac{1}{{\sqrt 6 }}$$