3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
51.
$$\vec a = 3\hat i - 5\hat j$$ and $$\vec b = 6\hat i + 3\hat j$$ are two vectors and $${\vec c}$$ is a vector such that $$\vec c = \vec a \times \vec b$$ then $$\left| {\vec a} \right|:\left| {\vec b} \right|:\left| {\vec c} \right| = ?$$
52.
If the lines $$\frac{{x + 2}}{{4\lambda + 1}} = \frac{{y - 1}}{4} = \frac{z}{{ - 18}}$$ and $$\frac{x}{{ - 3}} = \frac{{y + 1}}{{5\mu - 3}} = \frac{{z - 1}}{6}$$ are parallel to each other then the value of the pair $$\left( {\lambda ,\,\mu } \right)$$ is :
A
$$\left( { - 2,\,\frac{1}{3}} \right)$$
B
$$\left( {2,\, - \frac{1}{3}} \right)$$
C
$$\left( {2,\,\frac{1}{3}} \right)$$
D
cannot be found
Answer :
$$\left( {2,\,\frac{1}{3}} \right)$$
Direction ratios of the lines are $$4\lambda + 1,\,4,\, - 18,$$ and $$ - 3,\,5\mu - 3,\,6.$$
They are parallel
$$\eqalign{
& \Rightarrow \frac{{4\lambda + 1}}{{ - 3}} = \frac{4}{{5\mu - 3}} = \frac{{ - 18}}{6} \cr
& \Rightarrow \frac{{4\lambda + 1}}{{ - 3}} = - 3{\text{ and }}\frac{4}{{5\mu - 3}} = - 3 \cr} $$
53.
The vectors $$\hat i - 2x\hat j - 3y\hat k$$ and $$\hat i + 3x\hat j + 2y\hat k$$ are orthogonal to each other. Then the locus of the point $$\left( {x,\,y} \right)$$ is :
54.
If the vectors $$\vec a = \hat i - \hat j + 2\hat k,\,\vec b = 2\hat i + 4\hat j + \,\hat k$$ and $$\vec c = \lambda \hat i + \hat j + \mu \hat k$$ are mutually orthogonal, then $$\left( {\lambda ,\,\mu } \right) = ?$$
A
$$\left( {2,\, - 3} \right)$$
B
$$\left( { - 2,\, 3} \right)$$
C
$$\left( {3,\, - 2} \right)$$
D
$$\left( { - 3,\, 2} \right)$$
Answer :
$$\left( { - 3,\, 2} \right)$$
Since, $$\vec a,\,\vec b$$ and $${\vec c}$$ are mutually orthogonal
$$\eqalign{
& \therefore \,\,\vec a.\vec b = 0,\,\,\vec b.\vec c = 0,\,\,\vec c.\vec a = 0 \cr
& \Rightarrow 2\lambda + 4 + \mu = 0.....({\text{i}}) \cr
& \Rightarrow \lambda - 1 + 2\mu = 0.....({\text{ii}}) \cr} $$
On solving (i) and (ii), we get $$\lambda = - 3,\,\,\mu = 2$$
55.
If $$\vec a,\,\vec b$$ and $$\vec c$$ are three non coplanar vectors, then $$\left( {\vec a + \vec b + \vec c} \right).\left[ {\left( {\vec a + \vec b} \right) \times \left( {\vec a + \vec c} \right)} \right]$$ equals :
\[\begin{array}{l}
\overrightarrow A = \hat i + \hat j + \hat k\\
\overrightarrow B = 2\hat i + 3\hat j - \hat k\\
\overrightarrow A \times \overrightarrow B = \left| \begin{array}{l}
\hat i\,\,\,\,\hat j\,\,\,\,\,\,\,\,\hat k\\
1\,\,\,\,\,1\,\,\,\,\,\,\,\,1\\
2\,\,\,\,3\,\, - 1
\end{array} \right|\\
= \hat i\left( { - 1 - 3} \right) - \hat j\left( { - 1 - 2} \right) + \hat k\left( {3 - 2} \right)\\
= - 4\hat i + 3\hat j + \hat k
\end{array}\]
Vector of unit length orthogonal to both the vectors $$\overrightarrow A $$ and $$\overrightarrow B $$
$$\eqalign{
& = \frac{{\overrightarrow A \times \overrightarrow B }}{{\left| {\overrightarrow A \times \overrightarrow B } \right|}} \cr
& = \frac{{ - 4\hat i + 3\hat j + \hat k}}{{\sqrt {16 + 9 + 1} }} \cr
& = \frac{{ - 4\hat i + 3\hat j + \hat k}}{{\sqrt {26} }} \cr} $$
57.
Let $$\vec V = 2\vec i + \vec j - \vec k$$ and $$\vec W = \vec i + 3\vec k.$$ If $${\vec U}$$ is a unit vector, then the maximum value of the scalar triple product $$\left| {\vec U\vec V\vec W} \right|$$ is :
A
$$-1$$
B
$$\sqrt {10} + \sqrt 6 $$
C
$$\sqrt {59} $$
D
$$\sqrt {60} $$
Answer :
$$\sqrt {59} $$
Given that $$\vec v = 2\hat i + \hat j - \hat k$$ and $$\vec w = \hat i + 3\hat k$$ and $$u$$ is a unit vector $$\therefore \,\,\left| {\vec u} \right| = 1$$
$$\eqalign{
& {\text{Now, }}\left[ {\vec u\,\vec v\,\vec w} \right] = \vec u.\left( {\vec v \times \vec w} \right) \cr
& = \vec u.\left( {2\hat i + \hat j - \hat k} \right) \times \left( {\hat i + 3\hat k} \right) \cr
& = \vec u.\left( {3\hat i - 7\hat j - \hat k} \right) \cr
& = \sqrt {{3^2} + {7^2} + {1^2}} \,\cos \,\theta \cr} $$
which is maximum when $$\cos \,\theta = 1$$
$$\therefore $$ Maximum value of $$\left[ {\vec u\,\vec v\,\vec w} \right] = \sqrt {59} $$
58.
Let $$\overrightarrow {{r_1}} ,\,\overrightarrow {{r_2}} ,\,\overrightarrow {{r_3}} ,.....,\overrightarrow {{r_n}} ,$$ be the position vectors of points $${P_1},\,{P_2},\,{P_3},.....,\,{P_n}$$ relative to the origin $$O.$$ If the vector equation $${a_1}\overrightarrow {{r_1}} + {a_2}\overrightarrow {{r_2}} + ..... + {a_n}\overrightarrow {{r_n}} = 0$$ holds, then a similar equation will also hold w.r.t. to any other origin provided :
59.
The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$ are collinear if :
A
$$a = - 40$$
B
$$a = 40$$
C
$$a = 20$$
D
none of these
Answer :
$$a = - 40$$
Three points $$A,\,B,\,C$$ are collinear if $$\overrightarrow {AB} \,\,||\,\,\overrightarrow {AC} $$
$$\eqalign{
& \overrightarrow {AB} = - 20\hat i - 11\hat j;\,\,\overrightarrow {AC} = \left( {a - 60} \right)\hat i - 55\hat j \cr
& \overrightarrow {AB} \,\,||\,\,\overrightarrow {AC} \Rightarrow \frac{{a - 60}}{{ - 20}} = \frac{{ - 55}}{{ - 11}} \Rightarrow a = - 40 \cr} $$
60.
The direction cosines of the projection of the line $$\frac{x}{{ - 2}} = \frac{{y - 1}}{1} = \frac{{z + 1}}{{ - 1}}$$ on the plane $$2x + y - 3z = 5$$ are :
A
$$2,\, - 1,\,1$$
B
$$\frac{2}{7},\,\frac{{ - 1}}{7},\,\frac{1}{7}$$