3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

61. If $$\overrightarrow d $$ is a unit vector such that $$\overrightarrow d = \lambda \overrightarrow b \times \overrightarrow c + \mu \overrightarrow c \times \overrightarrow a + \nu \overrightarrow a \times \overrightarrow b $$         then $$\left| {\left( {\overrightarrow d .\overrightarrow a } \right)\left( {\overrightarrow b \times \overrightarrow c } \right) + \left( {\overrightarrow d .\overrightarrow b } \right)\left( {\overrightarrow c \times \overrightarrow a } \right) + \left( {\overrightarrow d .\overrightarrow c } \right)\left( {\overrightarrow a \times \overrightarrow b } \right)} \right|$$              is equal to :

A $$\left| {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]} \right|$$
B $$1$$
C $$3\left| {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]} \right|$$
D none of these
Answer :   $$\left| {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]} \right|$$

62. Let $$\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right| = \left| {\overrightarrow a - \overrightarrow b } \right| = 1.$$      Then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is :

A $$\frac{\pi }{6}$$
B $$\frac{\pi }{3}$$
C $$\frac{\pi }{4}$$
D $$\frac{\pi }{2}$$
Answer :   $$\frac{\pi }{3}$$

63. If $$\overrightarrow a = \overrightarrow i + \overrightarrow j + \overrightarrow k ,\,\overrightarrow b = 4\overrightarrow i + 3\overrightarrow j + 4\overrightarrow k $$        and $$\overrightarrow c = \overrightarrow i + \alpha \overrightarrow j + \beta \overrightarrow k $$    are linearly dependent vectors and $$\left| {\overrightarrow c } \right| = \sqrt 3 $$   then :

A $$\alpha = 1,\,\,\beta = - 1$$
B $$\alpha = 1,\,\,\beta = \pm 1$$
C $$\alpha = - 1,\,\,\beta = \pm 1$$
D $$\alpha = \pm 1,\,\,\beta = 1$$
Answer :   $$\alpha = \pm 1,\,\,\beta = 1$$

64. What is the area of the parallelogram having diagonals $$3\hat i + \hat j - 2\hat k$$   and $$\hat i - 3\hat j + 4\hat k\,?$$

A $$5\sqrt 5 $$  square units
B $$4\sqrt 5 $$  square units
C $$5\sqrt 3 $$  square units
D $$15\sqrt 2 $$  square units
Answer :   $$5\sqrt 3 $$  square units

65. If $$\vec a,\,\vec b,\,\vec c$$  are vectors show that $$\vec a + \vec b + \vec c = 0$$    and $$\left| {\vec a} \right| = 7,\,\left| {\vec b} \right| = 5,\,\left| {\vec c} \right| = 3$$     then angle between vector $${\vec b}$$ and $${\vec c}$$ is :

A $${60^ \circ }$$
B $${30^ \circ }$$
C $${45^ \circ }$$
D $${90^ \circ }$$
Answer :   $${60^ \circ }$$

66. Two particles start simultaneously from the same point and move along two straight lines, one with uniform velocity $$\overrightarrow u $$ and the other from rest with uniform acceleration $$\overrightarrow f .$$ Let $$\alpha $$ be the angle between their directions of motion. The relative velocity of the second particle w.r.t. the first is least after a time :

A $$\frac{{u\,\cos \,\alpha }}{f}$$
B $$\frac{{u\,\sin \,\alpha }}{f}$$
C $$\frac{{f\,\cos \,\alpha }}{u}$$
D $${u\,\sin \,\alpha }$$
Answer :   $$\frac{{u\,\cos \,\alpha }}{f}$$

67. The number of real values of $$k$$ for which the lines $$\frac{{x - k}}{4} = \frac{{y - 1}}{2} = \frac{{z + 1}}{1}$$     and $$\frac{{x - \left( {k + 1} \right)}}{1} = \frac{y}{{ - 1}} = \frac{{z - 1}}{2}$$      are intersecting, is :

A 0
B 2
C 1
D infinite
Answer :   infinite

68. $$ABC$$  is a triangle where $$A = \left( {2,\,3,\,5} \right),\,B = \left( { - 1,\,3,\,2} \right)$$      and $$C = \left( {\lambda ,\,5,\,\mu } \right).$$   If the median through $$A$$ is equally inclined with the axes then :

A $$\lambda = 14,\,\mu = 20$$
B $$\lambda = 7,\,\mu = 10$$
C $$\lambda = \frac{7}{2},\,\mu = 5$$
D $$\lambda = 10,\,\mu = 7$$
Answer :   $$\lambda = 7,\,\mu = 10$$

69. The lines $$x = ay + b,\,z = cy + d$$     and $$x = a'y + b',\,z = c'y + d'$$      will be perpendicular if and only if :

A $$aa' + bb' + cc' = 0$$
B $$\left( {a + a'} \right) + \left( {b + b'} \right) + c + c' = 0$$
C $$aa' + cc' + 1 = 0$$
D $$aa' + bb' + cc' + 1 = 0$$
Answer :   $$aa' + cc' + 1 = 0$$

70. The image of the point $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$   by the plane $$lx + my + nz = 0$$    is the point $$Q\left( {\alpha ',\,\beta ',\,\gamma '} \right).$$   Then :

A $${\alpha ^2} + {\beta ^2} + {\gamma ^2} = {l^2} + {m^2} + {n^2}$$
B $${\alpha ^2} + {\beta ^2} + {\gamma ^2} = \alpha {'^2} + \beta {'^2} + \gamma {'^2}$$
C $$\alpha \alpha ' + \beta \beta ' + \gamma \gamma ' = 0$$
D $$l\left( {\alpha - \alpha '} \right) + m\left( {\beta - \beta '} \right) + n\left( {\gamma - \gamma '} \right) = 0$$
Answer :   $${\alpha ^2} + {\beta ^2} + {\gamma ^2} = \alpha {'^2} + \beta {'^2} + \gamma {'^2}$$