3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
61.
If $$\overrightarrow d $$ is a unit vector such that $$\overrightarrow d = \lambda \overrightarrow b \times \overrightarrow c + \mu \overrightarrow c \times \overrightarrow a + \nu \overrightarrow a \times \overrightarrow b $$ then $$\left| {\left( {\overrightarrow d .\overrightarrow a } \right)\left( {\overrightarrow b \times \overrightarrow c } \right) + \left( {\overrightarrow d .\overrightarrow b } \right)\left( {\overrightarrow c \times \overrightarrow a } \right) + \left( {\overrightarrow d .\overrightarrow c } \right)\left( {\overrightarrow a \times \overrightarrow b } \right)} \right|$$ is equal to :
A
$$\left| {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]} \right|$$
B
$$1$$
C
$$3\left| {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]} \right|$$
D
none of these
Answer :
$$\left| {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]} \right|$$
$$\eqalign{
& \overrightarrow d .\overrightarrow a = \lambda \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right] + \mu \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow a } \right] + \nu \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] = \lambda \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] \cr
& {\text{Similarly, }}\overrightarrow d .\overrightarrow b = \mu \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right]{\text{ and }}\overrightarrow d .\overrightarrow c = \nu \left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] \cr
& \therefore \,\lambda = \frac{{\overrightarrow d .\overrightarrow a }}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}},\,\,\mu = \frac{{\overrightarrow d .\overrightarrow b }}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}},\,\,\nu = \frac{{\overrightarrow d .\overrightarrow c }}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}} \cr
& \therefore \,\overrightarrow d = \frac{{\overrightarrow d .\overrightarrow a }}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}}\overrightarrow b \times \overrightarrow c + \frac{{\overrightarrow d .\overrightarrow b }}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}}\overrightarrow c \times \overrightarrow a + \frac{{\overrightarrow d .\overrightarrow c }}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}}\overrightarrow a \times \overrightarrow b \cr
& \therefore {\text{ the expression}} = \left| {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow d } \right| = \left| {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]} \right|\,\left| {\overrightarrow d } \right| = \left| {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]} \right| \cr} $$
62.
Let $$\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right| = \left| {\overrightarrow a - \overrightarrow b } \right| = 1.$$ Then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is :
A
$$\frac{\pi }{6}$$
B
$$\frac{\pi }{3}$$
C
$$\frac{\pi }{4}$$
D
$$\frac{\pi }{2}$$
Answer :
$$\frac{\pi }{3}$$
$$\eqalign{
& 1 = {\left| {\overrightarrow a - \overrightarrow b } \right|^2} = {\left( {\overrightarrow a - \overrightarrow b } \right)^2} = {\overrightarrow a ^2} + {\overrightarrow b ^2} - 2\overrightarrow a .\overrightarrow b = 1 + 1 - 2\overrightarrow a .\overrightarrow b \cr
& \therefore \,\,\,\overrightarrow a .\overrightarrow b = \frac{1}{2} \cr
& {\text{or }}\left| {\overrightarrow a } \right|\,\left| {\overrightarrow b } \right|\cos \,\theta = \frac{1}{2} \cr
& {\text{or }}\cos \,\theta = \frac{1}{2} \cr
& {\text{or }}\,\theta = \frac{\pi }{3} \cr} $$
63.
If $$\overrightarrow a = \overrightarrow i + \overrightarrow j + \overrightarrow k ,\,\overrightarrow b = 4\overrightarrow i + 3\overrightarrow j + 4\overrightarrow k $$ and $$\overrightarrow c = \overrightarrow i + \alpha \overrightarrow j + \beta \overrightarrow k $$ are linearly dependent vectors and $$\left| {\overrightarrow c } \right| = \sqrt 3 $$ then :
65.
If $$\vec a,\,\vec b,\,\vec c$$ are vectors show that $$\vec a + \vec b + \vec c = 0$$ and $$\left| {\vec a} \right| = 7,\,\left| {\vec b} \right| = 5,\,\left| {\vec c} \right| = 3$$ then angle between vector $${\vec b}$$ and $${\vec c}$$ is :
66.
Two particles start simultaneously from the same point and move along two straight lines, one with uniform velocity $$\overrightarrow u $$ and the other from rest with uniform acceleration $$\overrightarrow f .$$ Let $$\alpha $$ be the
angle between their directions of motion. The relative velocity of the second particle w.r.t. the first is least after a time :
A
$$\frac{{u\,\cos \,\alpha }}{f}$$
B
$$\frac{{u\,\sin \,\alpha }}{f}$$
C
$$\frac{{f\,\cos \,\alpha }}{u}$$
D
$${u\,\sin \,\alpha }$$
Answer :
$$\frac{{u\,\cos \,\alpha }}{f}$$
We can consider the two velocities as $$\overrightarrow {{v_1}} = u\hat i{\text{ and }}\overrightarrow {{v_2}} = \left( {ft\,\cos \,\alpha } \right)\hat i + \left( {ft\,\sin \,\alpha } \right)\hat j$$
$$\therefore $$ Relative velocity of second with respect to first
$$\eqalign{
& \overrightarrow v = \overrightarrow {{v_2}} - \overrightarrow {{v_1}} = \left( {ft\,\cos \,\alpha - u} \right)\hat i + \left( {ft\,\sin \,\alpha } \right)\hat j \cr
& \Rightarrow {\left| {\overrightarrow v } \right|^2} = {\left( {ft\,\cos \,\alpha - u} \right)^2} + {\left( {ft\,\sin \,\alpha } \right)^2} \cr
& \Rightarrow {\left| {\overrightarrow v } \right|^2} = {f^2}{t^2} + {u^2} - 2uft\,\cos \,\alpha \cr} $$
For $$\left| {\overrightarrow v } \right|$$ to be min we should have
$$\eqalign{
& \frac{{d{{\left| v \right|}^2}}}{{dt}} = 0 \cr
& \Rightarrow 2{f^2}t - 2uf\,\cos \,\alpha = 0 \cr
& \Rightarrow t = \frac{{u\,\cos \,\alpha }}{f} \cr} $$
Also, $$\frac{{{d^2}{{\left| v \right|}^2}}}{{d{t^2}}} = 2{f^2} = + ve$$
$$\therefore \,{\left| v \right|^2}$$ and hence $$\left| v \right|$$ is least at the time $$\frac{{u\,\cos \,\alpha }}{f}$$
67.
The number of real values of $$k$$ for which the lines $$\frac{{x - k}}{4} = \frac{{y - 1}}{2} = \frac{{z + 1}}{1}$$ and $$\frac{{x - \left( {k + 1} \right)}}{1} = \frac{y}{{ - 1}} = \frac{{z - 1}}{2}$$ are intersecting, is :
A
0
B
2
C
1
D
infinite
Answer :
infinite
Any point on the first line is $$\left( {4r + k,\,2r + 1,\,r - 1} \right),$$ and any point on the second line is $$\left( {r' + k + 1,\, - r',\,2r' + 1} \right).$$ The lines are intersecting if $$4r + k = r' + k + 1,\,2r + 1 = - r',\,r - 1 = 2r' + 1$$ for some $$r$$ and $$r' \Rightarrow 4r - r' = 1,\,2r + r' = - 1,\,r - 2r' = 2.$$
Now, $$4r - r' = 1,\,2r + r' = - 1\,\, \Rightarrow r = 0,\,r' = - 1$$ which satisfy $$r - 2r' = 2.$$
This is true for all $$k.$$
68.
$$ABC$$ is a triangle where $$A = \left( {2,\,3,\,5} \right),\,B = \left( { - 1,\,3,\,2} \right)$$ and $$C = \left( {\lambda ,\,5,\,\mu } \right).$$ If the median through $$A$$ is equally inclined with the axes then :
A
$$\lambda = 14,\,\mu = 20$$
B
$$\lambda = 7,\,\mu = 10$$
C
$$\lambda = \frac{7}{2},\,\mu = 5$$
D
$$\lambda = 10,\,\mu = 7$$
Answer :
$$\lambda = 7,\,\mu = 10$$
Centroid $$G = \left( {\frac{{2 - 1 + \lambda }}{3},\,\frac{{3 + 3 + 5}}{3},\,\frac{{5 + 2 + \mu }}{3}} \right).$$
Direction ratios of $$AG$$ are $$2 - \frac{{1 + \lambda }}{3},\,3 - \frac{{11}}{3},\,5 - \frac{{7 + \mu }}{3},{\text{ i}}{\text{.e}}{\text{., }}\frac{{5 - \lambda }}{3},\,\frac{{ - 2}}{3},\,\frac{{8 - \mu }}{3}.$$
As $$AG$$ is equally inclined with the axes, the direction ratios are $$1,\,1,\,1$$ also.
$$\therefore \frac{{\frac{{5 - \lambda }}{3}}}{1} = \frac{{\frac{{ - 2}}{3}}}{1} = \frac{{\frac{{8 - \mu }}{3}}}{1} \Rightarrow 5 - \lambda = - 2 = 8 - \mu $$
69.
The lines $$x = ay + b,\,z = cy + d$$ and $$x = a'y + b',\,z = c'y + d'$$ will be perpendicular if and only if :
A
$$aa' + bb' + cc' = 0$$
B
$$\left( {a + a'} \right) + \left( {b + b'} \right) + c + c' = 0$$
C
$$aa' + cc' + 1 = 0$$
D
$$aa' + bb' + cc' + 1 = 0$$
Answer :
$$aa' + cc' + 1 = 0$$
For the first line, $$x - b = ay,\,z - d = cy\,\,\,\,\, \Rightarrow \frac{{x - b}}{a} = \frac{y}{1} = \frac{{z - d}}{c}.$$
For the second line, $$x - b' = a'y,\,z - d' = c'y\,\,\, \Rightarrow \frac{{x - b'}}{{a'}} = \frac{y}{1} = \frac{{z - d'}}{{c'}}.$$
These lines are perpendicular $$ \Rightarrow \,a.a' + 1.1 + c.c' = 0.$$
70.
The image of the point $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$ by the plane $$lx + my + nz = 0$$ is the point $$Q\left( {\alpha ',\,\beta ',\,\gamma '} \right).$$ Then :
Given image of the point $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$ by the plane $$lx + my + nz = 0$$ is the point $$Q\left( {\alpha ',\,\beta ',\,\gamma '} \right)$$
But $$lx + my + nz = 0$$ passes through origin.
Let $$O$$ be the origin.
Therefore, $$O$$ is equidistant from $$P$$ and $$Q$$
$$\eqalign{
& \Rightarrow OP = OQ \cr
& \Rightarrow O{P^2} = O{Q^2} \cr
& \therefore \,{\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\alpha ^2} + {\beta ^2} + {\gamma ^2} \cr} $$
Here, option B is correct.