3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

71. The projection of a line segment on the axes of reference are $$3,\,4$$  and $$12$$ respectively. The length of the line segment is :

A $$19$$
B $$\frac{{19}}{3}$$
C $$5$$
D $$13$$
Answer :   $$13$$

72. If $$\vec a$$ and $$\vec b$$ are vectors such that $$\left| {\vec a + \vec b} \right| = \sqrt {29} $$   and $$\vec a \times \left( {2\hat i + 3\hat j + 4\hat k} \right) = \left( {2\hat i + 3\hat j + 4\hat k} \right) \times \vec b,$$         then a possible value of $$\left( {\vec a + \vec b} \right).\left( { - 7\hat i + 2\hat j + 3\hat k} \right)$$     is :

A $$0$$
B $$3$$
C $$4$$
D $$8$$
Answer :   $$4$$

73. Let $$\vec a = \hat i + \hat j + \hat k,\,\vec b = \hat i - \hat j + 2\hat k$$       and $$\vec c = x\hat i + \left( {x - 2} \right)\hat j - \hat k.$$     If the vectors $${\vec c}$$ lies in the plane of $${\vec a}$$ and $${\vec b},$$  then $$x$$ equals :

A $$ - 4$$
B $$ - 2$$
C $$0$$
D $$1$$
Answer :   $$ - 2$$

74. If $$\overrightarrow a $$ is a position vector of a point $$\left( {1,\, - 3} \right)$$  and $$A$$ is another point $$\left( { - 1,\,5} \right),$$   then what are the coordinates of the point $$B$$ such that $$\overrightarrow {AB} = \overrightarrow a \,?$$

A $$\left( {2,\,0} \right)$$
B $$\left( {0,\,2} \right)$$
C $$\left( { - 2,\,0} \right)$$
D $$\left( {0,\, - 2} \right)$$
Answer :   $$\left( {0,\,2} \right)$$

75. The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A $$0$$
B $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D None of these
Answer :   $$0$$

76. For any vector $$\vec a,$$  the value of $${\left( {\vec a \times \hat i} \right)^2} + {\left( {\vec a \times \hat j} \right)^2} + {\left( {\vec a \times \hat k} \right)^2}\,$$       is equal to :

A $$3{{\vec a}^2}$$
B $${{\vec a}^2}$$
C $$2{{\vec a}^2}$$
D $$4{{\vec a}^2}$$
Answer :   $$2{{\vec a}^2}$$

77. Force $$\hat i + 2\hat j - 3\hat k,\,2\hat i + 3\hat j + 4\hat k$$       and $$ - \hat i - \hat j + \hat k$$    are acting at the point $$P\left( {0,\,1,\,2} \right).$$    The moment of these forces about the point $$A\left( {1,\, - 2,\,0} \right)$$    is :

A $$2\hat i - 6\hat j + 10\hat k$$
B $$ - 2\hat i + 6\hat j - 10\hat k$$
C $$2\hat i + 6\hat j - 10\hat k$$
D None of these
Answer :   $$ - 2\hat i + 6\hat j - 10\hat k$$

78. Let $$\overrightarrow a ,\,\overrightarrow b $$  and $$\overrightarrow c $$ be three vectors having magnitudes $$1,\,1$$  and $$2$$ respectively. If $$\overrightarrow a \times \left( {\overrightarrow a \times \overrightarrow c } \right) + \overrightarrow b = \overrightarrow 0 ,$$      the acute angle between $$\overrightarrow a $$ and $$\overrightarrow c $$ is :

A $$\frac{\pi }{3}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{6}$$
D none of these
Answer :   $$\frac{\pi }{6}$$

79. Let $$\overrightarrow a = 2\overrightarrow i + \overrightarrow j + \overrightarrow k ,\,\overrightarrow b = \overrightarrow i + 2\overrightarrow j - \overrightarrow k $$        and a unit vector $$\overrightarrow c $$ be coplanar. If $$\overrightarrow c $$ is perpendicular to $$\overrightarrow a $$ then $$\overrightarrow c = ?$$  

A $$\frac{1}{{\sqrt 2 }}\left( { - \overrightarrow j + \overrightarrow k } \right)$$
B $$\frac{1}{{\sqrt 3 }}\left( { - \overrightarrow i - \overrightarrow j - \overrightarrow k } \right)$$
C $$\frac{1}{{\sqrt 5 }}\left( {\overrightarrow i - 2\overrightarrow j } \right)$$
D $$\frac{1}{{\sqrt 3 }}\left( {\overrightarrow i - \overrightarrow j - \overrightarrow k } \right)$$
Answer :   $$\frac{1}{{\sqrt 2 }}\left( { - \overrightarrow j + \overrightarrow k } \right)$$

80. $$P$$ is a point on the line through the point $$A$$ whose position vector is $$\overrightarrow a $$ and the line is parallel to the vector $$\overrightarrow b .$$ If $$PA=6,$$  the position vector of $$P$$ is :

A $$\overrightarrow a + 6\overrightarrow b $$
B $$\overrightarrow a + \frac{6}{{\left| {\overrightarrow b } \right|}}\overrightarrow b $$
C $$\overrightarrow a - 6\overrightarrow b $$
D $$\overrightarrow b + \frac{6}{{\left| {\overrightarrow a } \right|}}\overrightarrow a $$
Answer :   $$\overrightarrow a + \frac{6}{{\left| {\overrightarrow b } \right|}}\overrightarrow b $$