3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
71.
The projection of a line segment on the axes of reference are $$3,\,4$$ and $$12$$ respectively. The length of the line segment is :
A
$$19$$
B
$$\frac{{19}}{3}$$
C
$$5$$
D
$$13$$
Answer :
$$13$$
If the direction cosines be $$\cos \,\alpha ,\,\cos \,\beta ,\,\cos \,\gamma $$ and the length is $$l$$ then $$l\cos \,\alpha = 3,\,l\cos \,\beta = 4,\,l\cos \,\gamma = 12.$$
Squaring and adding, $${l^2}\left( {{{\cos }^2}\alpha + {{\cos }^2}\beta + {{\cos }^2}\gamma } \right) = {3^2} + {4^2} + {12^2} = {13^2}.$$
$$\therefore \,{l^2} = {13^2}.$$
72.
If $$\vec a$$ and $$\vec b$$ are vectors such that $$\left| {\vec a + \vec b} \right| = \sqrt {29} $$ and $$\vec a \times \left( {2\hat i + 3\hat j + 4\hat k} \right) = \left( {2\hat i + 3\hat j + 4\hat k} \right) \times \vec b,$$ then a possible value of $$\left( {\vec a + \vec b} \right).\left( { - 7\hat i + 2\hat j + 3\hat k} \right)$$ is :
A
$$0$$
B
$$3$$
C
$$4$$
D
$$8$$
Answer :
$$4$$
Given that $$\vec a \times \left( {2\hat i + 3\hat j + 4\hat k} \right) = \left( {2\hat i + 3\hat j + 4\hat k} \right) \times \vec b$$
$$ \Rightarrow \left( {\vec a + \vec b} \right) \times \left( {2\hat i + 3\hat j + 4\hat k} \right) = \vec 0$$
But neither $${\vec a + \vec b}$$ nor $${2\hat i + 3\hat j + 4\hat k}$$ is a null vector
$$\therefore \left( {\vec a + \vec b} \right)||\,\left( {2\hat i + 3\hat j + 4\hat k} \right) \Rightarrow \vec a + \vec b = \lambda \,\left( {2\hat i + 3\hat j + 4\hat k} \right)$$
Also given $$\left| {\vec a + \vec b} \right| = \sqrt {29} \,\,\, \Rightarrow \lambda = \pm 1$$
$$\eqalign{
& \therefore \vec a + \vec b = \pm \,\left( {2\hat i + 3\hat j + 4\hat k} \right) \cr
& \therefore \left( {\vec a + \vec b} \right).\,\left( { - 7\hat i + 2\hat j + 3\hat k} \right) = \pm 4 \cr} $$
73.
Let $$\vec a = \hat i + \hat j + \hat k,\,\vec b = \hat i - \hat j + 2\hat k$$ and $$\vec c = x\hat i + \left( {x - 2} \right)\hat j - \hat k.$$ If the vectors $${\vec c}$$ lies in the plane of $${\vec a}$$ and $${\vec b},$$ then $$x$$ equals :
A
$$ - 4$$
B
$$ - 2$$
C
$$0$$
D
$$1$$
Answer :
$$ - 2$$
Given $$\vec a = \hat i + \hat j + \hat k,\,\vec b = \hat i - \hat j + 2\hat k$$ and $$\vec c = x\hat i + \left( {x - 2} \right)\hat j - \hat k$$
If $${\vec c}$$ lies in the plane of $${\vec a}$$ and $${\vec b},$$ then $$\left[ {\vec a\,\vec b\,\vec c} \right] = 0$$
\[\begin{array}{l}
{\rm{i}}{\rm{.e}}{\rm{.,}}\,\left| \begin{array}{l}
1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\
1\,\,\,\,\,\,\,\, - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2\,\\
x\,\,\,\,\left( {x - 2} \right)\,\,\,\, - 1
\end{array} \right| = 0\\
\Rightarrow 1\left[ {1 - 2\left( {x - 2} \right) - 1\left[ { - 1 - 2x} \right]} \right] + 1\left[ {x - 2 + x} \right] = 0\\
\Rightarrow 1 - 2x + 4 + 1 + 2x + 2x - 2 = 0\\
\Rightarrow 2x = - 4\\
\Rightarrow x = - 2
\end{array}\]
74.
If $$\overrightarrow a $$ is a position vector of a point $$\left( {1,\, - 3} \right)$$ and $$A$$ is another point $$\left( { - 1,\,5} \right),$$ then what are the coordinates of the point $$B$$ such that $$\overrightarrow {AB} = \overrightarrow a \,?$$
A
$$\left( {2,\,0} \right)$$
B
$$\left( {0,\,2} \right)$$
C
$$\left( { - 2,\,0} \right)$$
D
$$\left( {0,\, - 2} \right)$$
Answer :
$$\left( {0,\,2} \right)$$
$$\eqalign{
& {\text{Let the coordinates of }}B{\text{ be }}\left( {x,{\text{ }}y} \right) \cr
& \overrightarrow a = i - 3j \cr
& {\text{P}}{\text{.V}}{\text{. of }}A{\text{ is}}\left( { - 1,\,5} \right) \cr
& {\text{So,}}\,\overrightarrow {OA} = i + 5j,\,\overrightarrow {OB} = xi + yj \cr
& \therefore \,\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow a \cr} $$
$$\eqalign{
& \Rightarrow x + 1 = 1{\text{ and }}y - 5 = - 3 \cr
& \Rightarrow x = 0{\text{ and }}y = 2 \cr
& \therefore \,{\text{Coordinates of }}B{\text{ are }}\left( {0,\,2} \right) \cr} $$
75.
The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$ equals :
$$\eqalign{
& \vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right) \cr
& = \vec A.\left[ {\vec B \times \vec A + \vec B \times \vec B + \vec B \times \vec C + \vec C \times \vec A + \vec C \times \vec B + \vec C \times \vec C} \right] \cr
& = \vec A.\vec B \times \vec A + \vec A.\vec B \times \vec C + \vec A.\vec C \times \vec A + \vec A.\vec C \times \vec B\,\,\,\,\left[ {{\text{Using }}\vec a \times \vec a = 0} \right] \cr
& = 0 + \left[ {\vec A\,\vec B\,\vec C} \right] + 0 + \left[ {\vec A\,\vec C\,\vec B} \right] \cr} $$
(as $$\left[ {\vec a\vec b\vec c} \right] = 0$$ if any two vector are equal out of $$\vec a,\,\vec b,\,\vec c$$ )
$$\eqalign{
& = \left[ {\vec A\,\vec B\,\vec C} \right] - \left[ {\vec A\,\vec B\,\vec C} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {{\text{using }}\left[ {\vec a\vec b\vec c} \right] = - \left[ {\vec a\vec c\vec b} \right]} \right] \cr
& = 0 \cr} $$
76.
For any vector $$\vec a,$$ the value of $${\left( {\vec a \times \hat i} \right)^2} + {\left( {\vec a \times \hat j} \right)^2} + {\left( {\vec a \times \hat k} \right)^2}\,$$ is equal to :
A
$$3{{\vec a}^2}$$
B
$${{\vec a}^2}$$
C
$$2{{\vec a}^2}$$
D
$$4{{\vec a}^2}$$
Answer :
$$2{{\vec a}^2}$$
$$\eqalign{
& {\text{Let }}\vec a = x\vec i + y\vec j + z\vec k \cr
& \vec a \times \vec i = z\vec j - y\vec k\,\,\,\,\, \Rightarrow {\left( {\vec a \times \hat i} \right)^2} = {y^2} + {z^2} \cr
& {\text{Similarly, }}{\left( {\vec a \times \hat j} \right)^2} = {x^2} + {z^2}{\text{ and }}{\left( {\vec a \times \hat k} \right)^2} = {x^2} + {y^2} \cr
& \Rightarrow {\left( {\vec a \times \hat i} \right)^2} + {\left( {\vec a \times \hat j} \right)^2} + {\left( {\vec a \times \hat k} \right)^2} = 2\left( {{x^2} + {y^2} + {z^2}} \right) \cr
& \Rightarrow {\left( {\vec a \times \hat i} \right)^2} + {\left( {\vec a \times \hat j} \right)^2} + {\left( {\vec a \times \hat k} \right)^2} = 2{{\vec a}^2} \cr} $$
77.
Force $$\hat i + 2\hat j - 3\hat k,\,2\hat i + 3\hat j + 4\hat k$$ and $$ - \hat i - \hat j + \hat k$$ are acting at the point $$P\left( {0,\,1,\,2} \right).$$ The moment of these forces about the point $$A\left( {1,\, - 2,\,0} \right)$$ is :
A
$$2\hat i - 6\hat j + 10\hat k$$
B
$$ - 2\hat i + 6\hat j - 10\hat k$$
C
$$2\hat i + 6\hat j - 10\hat k$$
D
None of these
Answer :
$$ - 2\hat i + 6\hat j - 10\hat k$$
If $$\overrightarrow F $$ be the resultant force, then $$\overrightarrow F = 2\hat i + 4\hat j + 2\hat k$$
Also, $$\overrightarrow r = \overrightarrow {AP} = - \hat i + 3\hat j + 2\hat k$$
$$\therefore $$ Required moment
\[ = \overrightarrow r \times \overrightarrow F = \left| \begin{array}{l}
\,\,\,\hat i\,\,\,\,\,\,\,\,\hat j\,\,\,\,\,\hat k\\
- 1\,\,\,\,\,3\,\,\,\,\,2\\
\,\,\,2\,\,\,\,\,\,\,4\,\,\,\,\,2
\end{array} \right| = - 2\hat i + 6\hat j - 10\hat k\]
78.
Let $$\overrightarrow a ,\,\overrightarrow b $$ and $$\overrightarrow c $$ be three vectors having magnitudes $$1,\,1$$ and $$2$$ respectively. If $$\overrightarrow a \times \left( {\overrightarrow a \times \overrightarrow c } \right) + \overrightarrow b = \overrightarrow 0 ,$$ the acute angle between $$\overrightarrow a $$ and $$\overrightarrow c $$ is :
A
$$\frac{\pi }{3}$$
B
$$\frac{\pi }{4}$$
C
$$\frac{\pi }{6}$$
D
none of these
Answer :
$$\frac{\pi }{6}$$
$$\eqalign{
& {\text{Here }}\left| {\overrightarrow a } \right| = 1,\,\,\left| {\overrightarrow b } \right| = 1,\,\,\left| {\overrightarrow c } \right| = 2 \cr
& {\text{Now, }}\overrightarrow a \times \left( {\overrightarrow a \times \overrightarrow c } \right) + \overrightarrow b = \overrightarrow 0 \cr
& {\text{or }}\left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow a - \left( {\overrightarrow a .\overrightarrow a } \right)\overrightarrow c + \overrightarrow b = \overrightarrow 0 \cr
& {\text{or }}2\cos \,\theta \,\overrightarrow a - \overrightarrow c + \overrightarrow b = 0 \cr
& {\text{or }}{\left( {\overrightarrow c - 2\cos \,\theta \,\overrightarrow a } \right)^2} = {\overrightarrow b ^2} \cr
& {\text{or }}{\left| {\overrightarrow c } \right|^2} + 4{\cos ^2}\theta \,{\left| {\overrightarrow a } \right|^2} - 4\cos \,\theta \,\overrightarrow c .\overrightarrow a = {\left| {\overrightarrow b } \right|^2} \cr
& {\text{or }}4 + 4{\cos ^2}\theta - 4\cos \,\theta .2\cos \,\theta = 1 \cr
& {\text{or }}4{\cos ^2}\theta = 3 \cr
& \therefore \,\,\theta = \frac{\pi }{6}. \cr} $$
79.
Let $$\overrightarrow a = 2\overrightarrow i + \overrightarrow j + \overrightarrow k ,\,\overrightarrow b = \overrightarrow i + 2\overrightarrow j - \overrightarrow k $$ and a unit vector $$\overrightarrow c $$ be coplanar. If $$\overrightarrow c $$ is perpendicular to $$\overrightarrow a $$ then $$\overrightarrow c = ?$$
A
$$\frac{1}{{\sqrt 2 }}\left( { - \overrightarrow j + \overrightarrow k } \right)$$
B
$$\frac{1}{{\sqrt 3 }}\left( { - \overrightarrow i - \overrightarrow j - \overrightarrow k } \right)$$
C
$$\frac{1}{{\sqrt 5 }}\left( {\overrightarrow i - 2\overrightarrow j } \right)$$
D
$$\frac{1}{{\sqrt 3 }}\left( {\overrightarrow i - \overrightarrow j - \overrightarrow k } \right)$$
80.
$$P$$ is a point on the line through the point $$A$$ whose position vector is $$\overrightarrow a $$ and the line is parallel to the vector $$\overrightarrow b .$$ If $$PA=6,$$ the position vector of $$P$$ is :
A
$$\overrightarrow a + 6\overrightarrow b $$
B
$$\overrightarrow a + \frac{6}{{\left| {\overrightarrow b } \right|}}\overrightarrow b $$
C
$$\overrightarrow a - 6\overrightarrow b $$
D
$$\overrightarrow b + \frac{6}{{\left| {\overrightarrow a } \right|}}\overrightarrow a $$
Answer :
$$\overrightarrow a + \frac{6}{{\left| {\overrightarrow b } \right|}}\overrightarrow b $$
$${\text{Clearly,}}\,\,\overrightarrow r = \overrightarrow a + \overrightarrow {AP} = \overrightarrow a \pm 6\frac{{\overrightarrow b }}{{\left| {\overrightarrow b } \right|}}.$$