3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

81. Two vectors $$\overrightarrow a = \overrightarrow i + \frac{{\overrightarrow j }}{{\sqrt 3 }}$$   and $$\overrightarrow b = \frac{{\overrightarrow i }}{{\sqrt 3 }} + \overrightarrow j $$   are :

A perpendicular to each other
B parallel to each other
C inclined to each other at an angle $$\frac{\pi }{3}$$
D inclined to each other at an angle $$\frac{\pi }{6}$$
Answer :   inclined to each other at an angle $$\frac{\pi }{6}$$

82. The variable plane $$\left( {2\lambda + 1} \right)x + \left( {3 - \lambda } \right)y + z = 4$$       always passes through the line :

A $$\frac{x}{0} = \frac{y}{0} = \frac{{z + 4}}{1}$$
B $$\frac{x}{1} = \frac{y}{2} = \frac{z}{{ - 3}}$$
C $$\frac{x}{1} = \frac{y}{2} = \frac{{z - 4}}{{ - 7}}$$
D none of these
Answer :   $$\frac{x}{1} = \frac{y}{2} = \frac{{z - 4}}{{ - 7}}$$

83. If . and $$ \times $$ represent dot product and cross product respectively then which of the following is meaningless?

A $$\left( {\overrightarrow a \times \overrightarrow b } \right).\left( {\overrightarrow c \times \overrightarrow d } \right)$$
B $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right)$$
C $$\left( {\overrightarrow a .\overrightarrow b } \right)\left( {\overrightarrow c \times \overrightarrow d } \right)$$
D $$\left( {\overrightarrow a .\overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right)$$
Answer :   $$\left( {\overrightarrow a .\overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right)$$

84. $${\left( {\overrightarrow a \times \overrightarrow i } \right)^2} + {\left( {\overrightarrow a \times \overrightarrow j } \right)^2} + {\left( {\overrightarrow a \times \overrightarrow k } \right)^2}$$       is equal to :

A $${\overrightarrow a ^2}$$
B $$3{\overrightarrow a ^2}$$
C $$2{\overrightarrow a ^2}$$
D none of these
Answer :   $$2{\overrightarrow a ^2}$$

85. If the vectors $$\vec c,\,\vec a = x\hat i + y\hat j + z\hat k$$     and $$\hat b = \hat j$$  are such that $$\vec a,\,\vec c$$  and $${\vec b}$$ form aright handed system then $${\vec c}$$ is :

A $$z\hat i - x\hat k$$
B $${\vec 0}$$
C $$y\hat j$$
D $$ - z\hat i + x\hat k$$
Answer :   $$z\hat i - x\hat k$$

86. Let the vectors $$\vec a,\,\vec b,\,\vec c$$   and $$\vec d$$ be such that $$\left( {\vec a \times \vec b} \right) \times \left( {\vec c \times \vec d} \right) = 0.$$     Let $${P_1}$$  and $${P_2}$$  be planes determined by the pairs of vectors $$\vec a,\,\vec b$$  and $$\vec c,\,\vec d$$  respectively. Then the angle between $${P_1}$$  and $${P_2}$$  is :

A $$0$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{3}$$
D $$\frac{\pi }{2}$$
Answer :   $$0$$

87. The vector moment about the point $$\overrightarrow i + 2\overrightarrow j + 3\overrightarrow k $$    of the resultant of the forces $$\overrightarrow i - 2\overrightarrow j + 5\overrightarrow k $$    and $$3\overrightarrow j - 4\overrightarrow k $$   acting at the point $$ - 2\overrightarrow i + 3\overrightarrow j - \overrightarrow k $$    is :

A $$5\overrightarrow i + \overrightarrow j - 4\overrightarrow k $$
B $$5\overrightarrow i - \overrightarrow j - 4\overrightarrow k $$
C $$3\overrightarrow i + \overrightarrow j - 4\overrightarrow k $$
D none of these
Answer :   $$5\overrightarrow i - \overrightarrow j - 4\overrightarrow k $$

88. If $$\vec a = \left( {\hat i + \hat j + \hat k} \right),\,\vec a.\vec b = 1$$     and $$\vec a \times \vec b = \hat j - \hat k,$$    then $${\vec b}$$ is :

A $$\hat i - \hat j + \hat k$$
B $$2\hat j - \hat k$$
C $${\hat i}$$
D $$2{\hat i}$$
Answer :   $${\hat i}$$

89. Let $$\overrightarrow a = \hat i - \hat j,\,\overrightarrow b = \hat j - \hat k$$     and $$\overrightarrow c = \hat k - \hat i.$$   If $$\overrightarrow d $$ is a unit vector such that $$\overrightarrow a .\overrightarrow d = 0 = \left[ {\overrightarrow b \overrightarrow c \overrightarrow d } \right],$$     then $$\overrightarrow d $$ equals :

A $$ \pm \frac{{\hat i + \hat j - 2\hat k}}{{\sqrt 6 }}$$
B $$ \pm \frac{{\hat i + \hat j - \hat k}}{{\sqrt 3 }}$$
C $$ \pm \frac{{\hat i + \hat j + \hat k}}{{\sqrt 3 }}$$
D $$ \pm \hat k$$
Answer :   $$ \pm \frac{{\hat i + \hat j - 2\hat k}}{{\sqrt 6 }}$$

90. $${L_r},\,{m_r},\,{n_r};\,r = 1,\,2,\,3;$$     are the direction cosines of three mutually perpendicular lines. The direction cosines of the line equally inclined to them are :

A $${l_1} + {l_2} + {l_3},\,{m_1} + {m_2} + {m_3},\,{n_1} + {n_2} + {n_3}$$
B $$\frac{{{l_1} + {l_2} + {l_3}}}{3},\,\frac{{{m_1} + {m_2} + {m_3}}}{3},\,\frac{{{n_1} + {n_2} + {n_3}}}{3}$$
C $$\frac{1}{{\sqrt 3 }}\left( {{l_1} + {l_2} + {l_3}} \right),\,\frac{1}{{\sqrt 3 }}\left( {{m_1} + {m_2} + {m_3}} \right),\,\frac{1}{{\sqrt 3 }}\left( {{n_1} + {n_2} + {n_3}} \right)$$
D $$\frac{{{l_1}{l_2}{l_3}}}{{\sqrt 3 }},\,\frac{{{m_1}{m_2}{m_3}}}{{\sqrt 3 }},\,\frac{{{n_1}{n_2}{n_3}}}{{\sqrt 3 }}$$
Answer :   $$\frac{1}{{\sqrt 3 }}\left( {{l_1} + {l_2} + {l_3}} \right),\,\frac{1}{{\sqrt 3 }}\left( {{m_1} + {m_2} + {m_3}} \right),\,\frac{1}{{\sqrt 3 }}\left( {{n_1} + {n_2} + {n_3}} \right)$$