3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
81.
Two vectors $$\overrightarrow a = \overrightarrow i + \frac{{\overrightarrow j }}{{\sqrt 3 }}$$ and $$\overrightarrow b = \frac{{\overrightarrow i }}{{\sqrt 3 }} + \overrightarrow j $$ are :
A
perpendicular to each other
B
parallel to each other
C
inclined to each other at an angle $$\frac{\pi }{3}$$
D
inclined to each other at an angle $$\frac{\pi }{6}$$
Answer :
inclined to each other at an angle $$\frac{\pi }{6}$$
The plane is $$x + 3y + z - 4 + \lambda \left( {2x - y} \right) = 0.$$
This always passes through the intersection of the planes $$x + 3y + z - 4 = 0$$ and $$2x - y = 0,$$ which is a line.
$$\eqalign{
& {\text{Now, }}2x - y = 0\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \frac{x}{1} = \frac{y}{2} \cr
& \therefore \,\,x + 3y + z - 4 = 0 \cr
& \Rightarrow x + 3.2x + z - 4 = 0 \cr
& \Rightarrow \,7x + z - 4 = 0 \cr
& \therefore \,7x = - \left( {z - 4} \right) \cr
& \Rightarrow \frac{x}{1} = \frac{{z - 4}}{{ - 7}} \cr
& \therefore \,\,{\text{ the line is }}\frac{x}{1} = \frac{y}{2} = \frac{{z - 4}}{{ - 7}}. \cr} $$
83.
If . and $$ \times $$ represent dot product and cross product respectively then which of the following is meaningless?
A
$$\left( {\overrightarrow a \times \overrightarrow b } \right).\left( {\overrightarrow c \times \overrightarrow d } \right)$$
B
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right)$$
C
$$\left( {\overrightarrow a .\overrightarrow b } \right)\left( {\overrightarrow c \times \overrightarrow d } \right)$$
D
$$\left( {\overrightarrow a .\overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right)$$
Answer :
$$\left( {\overrightarrow a .\overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right)$$
$$\overrightarrow a .\overrightarrow b $$ is a scalar and $$\overrightarrow a \times \overrightarrow b $$ is a vector. Dot or cross product is applicable for vectors only. Also, a vector may have a scalar multiple.
84.
$${\left( {\overrightarrow a \times \overrightarrow i } \right)^2} + {\left( {\overrightarrow a \times \overrightarrow j } \right)^2} + {\left( {\overrightarrow a \times \overrightarrow k } \right)^2}$$ is equal to :
A
$${\overrightarrow a ^2}$$
B
$$3{\overrightarrow a ^2}$$
C
$$2{\overrightarrow a ^2}$$
D
none of these
Answer :
$$2{\overrightarrow a ^2}$$
\[{\left( {\overrightarrow a \times \overrightarrow i } \right)^2} = \left( {\overrightarrow a \times \overrightarrow i } \right).\left( {\overrightarrow a \times \overrightarrow i } \right) = \left| \begin{array}{l}
\overrightarrow a .\overrightarrow a \,\,\,\,\,\overrightarrow a .\overrightarrow i \\
\overrightarrow i .\overrightarrow a \,\,\,\,\,\,\overrightarrow i .\overrightarrow i
\end{array} \right| = {\overrightarrow a ^2} - {\left( {\overrightarrow a .\overrightarrow i } \right)^2}\]
$$\eqalign{
& {\text{Similarly, }}{\left( {\overrightarrow a \times \overrightarrow j } \right)^2} = {\overrightarrow a ^2} - {\left( {\overrightarrow a .\overrightarrow j } \right)^2},{\text{ and}}\,\,{\left( {\overrightarrow a \times \overrightarrow k } \right)^2} = {\overrightarrow a ^2} - {\left( {\overrightarrow a .k} \right)^2} \cr
& \therefore {\text{ the expression}} = 3{\overrightarrow a ^2} - \left\{ {{{\left( {\overrightarrow a .\overrightarrow i } \right)}^2} + {{\left( {\overrightarrow a .\overrightarrow j } \right)}^2} + {{\left( {\overrightarrow a .\overrightarrow k } \right)}^2}} \right\} \cr
& = 3{\overrightarrow a ^2} - {\overrightarrow a ^2} \cr
& = 2{\overrightarrow a ^2} \cr} $$
85.
If the vectors $$\vec c,\,\vec a = x\hat i + y\hat j + z\hat k$$ and $$\hat b = \hat j$$ are such that $$\vec a,\,\vec c$$ and $${\vec b}$$ form aright handed system then $${\vec c}$$ is :
A
$$z\hat i - x\hat k$$
B
$${\vec 0}$$
C
$$y\hat j$$
D
$$ - z\hat i + x\hat k$$
Answer :
$$z\hat i - x\hat k$$
Since $$\vec a,\,\vec c,\,\vec b$$ form a right handed system,
\[\therefore \,\,\,\vec c = \,\vec b \times \vec a = \left| \begin{array}{l}
\hat i\,\,\,\,\,\hat j\,\,\,\,\,\hat k\\
0\,\,\,\,\,1\,\,\,\,\,0\\
x\,\,\,\,\,y\,\,\,\,z
\end{array} \right| = z\hat i - x\hat k\]
86.
Let the vectors $$\vec a,\,\vec b,\,\vec c$$ and $$\vec d$$ be such that $$\left( {\vec a \times \vec b} \right) \times \left( {\vec c \times \vec d} \right) = 0.$$ Let $${P_1}$$ and $${P_2}$$ be planes determined by the pairs of vectors $$\vec a,\,\vec b$$ and $$\vec c,\,\vec d$$ respectively. Then the angle between $${P_1}$$ and $${P_2}$$ is :
A
$$0$$
B
$$\frac{\pi }{4}$$
C
$$\frac{\pi }{3}$$
D
$$\frac{\pi }{2}$$
Answer :
$$0$$
Given that $$\vec a,\,\vec b,\,\vec c,\,\vec d$$ are vectors such that
$$\left( {\vec a \times \vec b} \right) \times \left( {\vec c \times \vec d} \right) = 0.....(1)$$
$${P_1}$$ is the plane determined by vectors $${\vec a}$$ and $${\vec b}$$
$$\therefore $$ Normal vectors $$\overrightarrow {{n_1}} $$ to $${P_1}$$ will be given by $$\overrightarrow {{n_1}} = \vec a \times \vec b$$
Similarly, $${P_2}$$ is the plane determined by vectors $${\vec c}$$ and $${\vec d}$$
$$\therefore $$ Normal vectors $$\overrightarrow {{n_2}} $$ to $${P_2}$$ will be given by $$\overrightarrow {{n_2}} = \vec c \times \vec d$$
Substituting the values of $$\overrightarrow {{n_1}} $$ and $$\overrightarrow {{n_2}} $$ in equation (1)
We get, $$\overrightarrow {{n_1}} \times \overrightarrow {{n_2}} = 0\,\,\,\,\,\,\, \Rightarrow \overrightarrow {{n_1}} ||\,\overrightarrow {{n_2}} $$
and hence the planes will also be parallel to each other.
Thus angle between the planes $$= 0.$$
87.
The vector moment about the point $$\overrightarrow i + 2\overrightarrow j + 3\overrightarrow k $$ of the resultant of the forces $$\overrightarrow i - 2\overrightarrow j + 5\overrightarrow k $$ and $$3\overrightarrow j - 4\overrightarrow k $$ acting at the point $$ - 2\overrightarrow i + 3\overrightarrow j - \overrightarrow k $$ is :
A
$$5\overrightarrow i + \overrightarrow j - 4\overrightarrow k $$
B
$$5\overrightarrow i - \overrightarrow j - 4\overrightarrow k $$
C
$$3\overrightarrow i + \overrightarrow j - 4\overrightarrow k $$
D
none of these
Answer :
$$5\overrightarrow i - \overrightarrow j - 4\overrightarrow k $$
$$\eqalign{
& {\text{Vector moment}} = \overrightarrow {AB} \times \left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right) = \left( {\overrightarrow {OB} - \overrightarrow {OA} } \right) \times \left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right) \cr
& = \left\{ {\left( { - 2\overrightarrow i + 3\overrightarrow j - \overrightarrow k } \right) - \left( {\overrightarrow i + 2\overrightarrow j + 3\overrightarrow k } \right)} \right\} \times \left( {\overrightarrow i - 2\overrightarrow j + 5\overrightarrow k + 3\overrightarrow j - 4\overrightarrow k } \right) \cr
& = \left( { - 3\overrightarrow i + \overrightarrow j - 4\overrightarrow k } \right) \times \left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right) \cr
& = 5\overrightarrow i - \overrightarrow j - 4\overrightarrow k \cr} $$
88.
If $$\vec a = \left( {\hat i + \hat j + \hat k} \right),\,\vec a.\vec b = 1$$ and $$\vec a \times \vec b = \hat j - \hat k,$$ then $${\vec b}$$ is :
A
$$\hat i - \hat j + \hat k$$
B
$$2\hat j - \hat k$$
C
$${\hat i}$$
D
$$2{\hat i}$$
Answer :
$${\hat i}$$
$$\eqalign{
& \because \,\left( {\vec a \times \vec b} \right) \times \vec a = \left( {\vec a.\vec a} \right)\vec b - \left( {\vec a.\vec b} \right)\vec a \cr
& \therefore \left( {\hat j - \hat k} \right) \times \left( {\hat i + \hat j + \hat k} \right) = {\left( {\sqrt 3 } \right)^2}\left( {\vec b} \right) - \left( {\hat i + \hat j + \hat k} \right) \cr
& \Rightarrow 3\hat b = 3\hat i\,\,\,\,\, \Rightarrow \hat b = \hat i \cr} $$
89.
Let $$\overrightarrow a = \hat i - \hat j,\,\overrightarrow b = \hat j - \hat k$$ and $$\overrightarrow c = \hat k - \hat i.$$ If $$\overrightarrow d $$ is a unit vector such that $$\overrightarrow a .\overrightarrow d = 0 = \left[ {\overrightarrow b \overrightarrow c \overrightarrow d } \right],$$ then $$\overrightarrow d $$ equals :
A
$$ \pm \frac{{\hat i + \hat j - 2\hat k}}{{\sqrt 6 }}$$
B
$$ \pm \frac{{\hat i + \hat j - \hat k}}{{\sqrt 3 }}$$
C
$$ \pm \frac{{\hat i + \hat j + \hat k}}{{\sqrt 3 }}$$
$$\eqalign{
& {\text{Let }}\overrightarrow d = x\hat i + y\hat j + z\hat k \cr
& {\text{where }}{x^2} + {y^2} + {z^2} = 1......\left( {\text{i}} \right) \cr
& \therefore \,\overrightarrow a .\overrightarrow d = 0 \Rightarrow x - y = 0{\text{ or }}x = y......\left( {{\text{ii}}} \right) \cr} $$
\[\left[ {\overrightarrow b \overrightarrow c \overrightarrow d } \right] = 0 \Rightarrow \left| \begin{array}{l}
\,\,\,0\,\,\,\,\,\,1\,\, - 1\\
- 1\,\,\,\,0\,\,\,\,\,\,\,\,1\\
\,\,\,x\,\,\,\,\,\,y\,\,\,\,\,\,\,z
\end{array} \right| = 0\]
$$\eqalign{
& {\text{or }}x + y + z = 0 \cr
& {\text{or }}2x + z = 0\,\,\,\left[ {{\text{Using }}\left( {{\text{ii}}} \right)} \right] \cr
& {\text{or }}z = - 2x......\left( {{\text{iii}}} \right) \cr} $$
From $$\left( {\text{i}} \right),\,\left( {{\text{ii}}} \right)$$ and $$\left( {{\text{iii}}} \right),$$ we have
$$\eqalign{
& {x^2} + {x^2} + 4{x^2} = 1 \cr
& \Rightarrow x = \pm \frac{1}{{\sqrt 6 }} \cr
& \therefore \,\overrightarrow d = \pm \left( {\frac{1}{{\sqrt 6 }}\hat i + \frac{1}{{\sqrt 6 }}\hat j - \frac{2}{{\sqrt 6 }}\hat k} \right) = \pm \left( {\frac{{\hat i + \hat j - 2\hat k}}{{\sqrt 6 }}} \right) \cr} $$
90.
$${L_r},\,{m_r},\,{n_r};\,r = 1,\,2,\,3;$$ are the direction cosines of three mutually perpendicular lines. The direction cosines of the line equally inclined to them are :