Circle MCQ Questions & Answers in Geometry | Maths

Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

111. Let the equation of a circle be $${x^2} + {y^2} = {a^2}.$$   If $${h^2} + {k^2} - {a^2} < 0$$    then the line $$hx + ky = {a^2}$$   is the :

A polar line of the point $$\left( {h,\,k} \right)$$  with respect to the circle
B real chord of contact of the tangents from $$\left( {h,\,k} \right)$$  to the circle
C equation of a tangent to the circle from the point $$\left( {h,\,k} \right)$$
D none of these
Answer :   polar line of the point $$\left( {h,\,k} \right)$$  with respect to the circle

112. The circle passing through the point $$\left( { - 1,\,0} \right)$$  and touching the $$y$$-axis at $$\left( {0,\,2} \right)$$  also passes through the point.

A $$\left( { - \frac{3}{2},\,0} \right)$$
B $$\left( { - \frac{5}{2},\,0} \right)$$
C $$\left( { - \frac{3}{2},\,\frac{5}{2}} \right)$$
D $$\left( { - 4,\,0} \right)$$
Answer :   $$\left( { - 4,\,0} \right)$$

113. The locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line $$4x - 5y = 20$$   to the circle $${x^2} + {y^2} = 9$$   is-

A $$20\left( {{x^2} + {y^2}} \right) - 36x + 45y = 0$$
B $$20\left( {{x^2} + {y^2}} \right) + 36x - 45y = 0$$
C $$36\left( {{x^2} + {y^2}} \right) - 20x + 45y = 0$$
D $$36\left( {{x^2} + {y^2}} \right) + 20x - 45y = 0$$
Answer :   $$20\left( {{x^2} + {y^2}} \right) - 36x + 45y = 0$$

114. The equation of the circumcircle of the regular hexagon whose two consecutive vertices have the coordinates $$\left( { - 1,\,0} \right)$$  and $$\left( {1,\,0} \right)$$  and which lies wholly above the $$x$$-axis, is :

A $${x^2} + {y^2} - 2\sqrt 3 y - 1 = 0$$
B $${x^2} + {y^2} - \sqrt 3 y - 1 = 0$$
C $${x^2} + {y^2} - 2\sqrt 3 x - 1 = 0$$
D none of these
Answer :   $${x^2} + {y^2} - 2\sqrt 3 y - 1 = 0$$

115. If two circles $$A,\,B$$  of equal radii pass through the centers of each other, then what is the ratio of the length of the smaller arc to the circumference of the circle $$A$$ cut off by the circle $$B\,?$$

A $$\frac{1}{2}$$
B $$\frac{1}{4}$$
C $$\frac{1}{3}$$
D $$\frac{2}{3}$$
Answer :   $$\frac{1}{3}$$

116. If a circle passes through the point $$\left( {a,\,b} \right)$$  and cuts the circle $${x^2} + {y^2} = 4$$   orthogonally, then the locus of its centre is-

A $$2ax - 2by - \left( {{a^2} + {b^2} + 4} \right) = 0$$
B $$2ax + 2by - \left( {{a^2} + {b^2} + 4} \right) = 0$$
C $$2ax - 2by + \left( {{a^2} + {b^2} + 4} \right) = 0$$
D $$2ax + 2by + \left( {{a^2} + {b^2} + 4} \right) = 0$$
Answer :   $$2ax + 2by - \left( {{a^2} + {b^2} + 4} \right) = 0$$

117. The number of points on the circle $$2{x^2} + 2{y^2} - 3x = 0$$     which are at a distance 2 from the point $$\left( { - 2,\,1} \right)$$  is :

A 2
B 0
C 1
D none of these
Answer :   0

118. The maximum number of points with rational coordinates on a circle whose centre is $$\left( {\sqrt 3 ,\,0} \right)$$  is :

A one
B two
C four
D infinite
Answer :   two

119. If a circle passes through the point $$\left( {a,\,b} \right)$$  and cuts the circle $${x^2} + {y^2} = {p^2}$$   orthogonally, then the equation of the locus of its centre is-

A $${x^2} + {y^2} - 3ax - 4by + \left( {{a^2} + {b^2} - {p^2}} \right) = 0$$
B $$2ax + 2by - \left( {{a^2} - {b^2} + {p^2}} \right) = 0$$
C $${x^2} + {y^2} - 2ax - 3by + \left( {{a^2} - {b^2} - {p^2}} \right) = 0$$
D $$2ax + 2by - \left( {{a^2} + {b^2} + {p^2}} \right) = 0$$
Answer :   $$2ax + 2by - \left( {{a^2} + {b^2} + {p^2}} \right) = 0$$

120. The number of common tangents to the circles $${x^2} + {y^2} + 2x + 8y - 23 = 0$$      and $${x^2} + {y^2} - 4x - 10y + 19 = 0$$      is :

A $$1$$
B $$2$$
C $$3$$
D $$4$$
Answer :   $$3$$