Circle MCQ Questions & Answers in Geometry | Maths

Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

131. Area of the equilateral triangle inscribed in the circle $${x^2} + {y^2} - 7x + 9y + 5 = 0$$      is :

A $$\frac{{155}}{8}\sqrt 3 {\text{ square units}}$$
B $$\frac{{185}}{8}\sqrt 3 {\text{ square units}}$$
C $$\frac{{175}}{8}\sqrt 3 {\text{ square units}}$$
D $$\frac{{165}}{8}\sqrt 3 {\text{ square units}}$$
Answer :   $$\frac{{165}}{8}\sqrt 3 {\text{ square units}}$$

132. Three sides of a triangle have the equations $${L_r} \equiv y - {m_r}x - {c_r} = 0;\,r = 1,\,2,\,3.$$       Then $$\lambda {L_2}{L_3} + \mu {L_3}{L_1} + \nu {L_1}{L_2} = 0,$$       where $$\lambda \ne 0,\,\mu \ne 0,\,\nu \ne 0,$$     is the equation of the circumcircle of the triangle if :

A $$\lambda \left( {{m_2} + {m_3}} \right) + \mu \left( {{m_3} + {m_1}} \right) + \nu \left( {{m_1} + {m_2}} \right) = 0$$
B $$\lambda \left( {{m_2}{m_3} - 1} \right) + \mu \left( {{m_3}{m_1} - 1} \right) + \nu \left( {{m_1}{m_2} - 1} \right) = 0$$
C both (A) and (B) hold together
D none of these
Answer :   both (A) and (B) hold together

133. If the line $$y - 1 = m\left( {x - 1} \right)$$    cuts the circle $${x^2} + {y^2} = 4$$   at two real points then the number of possible values of $$m$$ is :

A 1
B 2
C infinite
D none of these
Answer :   infinite

134. If the pair of lines $$a{x^2} + 2\left( {a + b} \right)xy + b{y^2} = 0$$      lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then-

A $$3{a^2} - 10ab + 3{b^2} = 0$$
B $$3{a^2} - 2ab + 3{b^2} = 0$$
C $$3{a^2} + 10ab + 3{b^2} = 0$$
D $$3{a^2} + 2ab + 3{b^2} = 0$$
Answer :   $$3{a^2} + 2ab + 3{b^2} = 0$$

135. The range of values of $$\lambda $$ for which the circles $${x^2} + {y^2} = 4$$   and $${x^2} + {y^2} - 4\lambda x + 9 = 0$$     have two common tangents, is :

A $$\lambda \, \in \left[ { - \frac{{13}}{8},\,\frac{{13}}{8}} \right]$$
B $$\lambda > \frac{{13}}{8}{\text{ or }}\lambda < - \frac{{13}}{8}$$
C $$1 < \lambda < \frac{{13}}{8}$$
D none of these
Answer :   $$\lambda > \frac{{13}}{8}{\text{ or }}\lambda < - \frac{{13}}{8}$$

136. Two tangents to the circle $${x^2} + {y^2} = 4$$   at the points $$A$$ and $$B$$ meet at $$P\left( { - 4,\,0} \right).$$   The area of the quadrilateral $$PAOB,$$   where $$O$$ is the origin, is :

A $$4$$
B $$6\sqrt 2 $$
C $$4\sqrt 3 $$
D none of these
Answer :   $$4\sqrt 3 $$

137. If the chord $$y = mx + 1$$   of the circle $${x^2} + {y^2} = 1$$   subtends an angle of measure $${45^ \circ }$$ at the major segment of the circle then value of $$m$$ is-

A $$2 \pm \sqrt 2 $$
B $$ - 2 \pm \sqrt 2 $$
C $$ - 1 \pm \sqrt 2 $$
D none of these
Answer :   $$ - 1 \pm \sqrt 2 $$

138. Let $$C$$ be the circle with centre $$\left( {0,\,0} \right)$$  and radius $$3$$ units. The equation of the locus of the mid points of the chords of the circle $$C$$ that subtend an angle of $$\frac{{2\pi }}{3}$$ at its center is-

A $${x^2} + {y^2} = \frac{3}{2}$$
B $${x^2} + {y^2} = 1$$
C $${x^2} + {y^2} = \frac{{27}}{4}$$
D $${x^2} + {y^2} = \frac{9}{4}$$
Answer :   $${x^2} + {y^2} = \frac{9}{4}$$

139. The equation of the incircle of the triangle formed by the axes and the line $$4x + 3y = 6$$   is :

A $${x^2} + {y^2} - 6x - 6y + 9 = 0$$
B $$4\left( {{x^2} + {y^2} - x - y} \right) + 1 = 0$$
C $$4\left( {{x^2} + {y^2} + x + y} \right) + 1 = 0$$
D none of these
Answer :   $$4\left( {{x^2} + {y^2} - x - y} \right) + 1 = 0$$

140. The equation of a circle with origin as a centre and passing through equilateral triangle whose median is of length $$3a$$  is-

A $${x^2} + {y^2} = 9{a^2}$$
B $${x^2} + {y^2} = 16{a^2}$$
C $${x^2} + {y^2} = 4{a^2}$$
D $${x^2} + {y^2} = {a^2}$$
Answer :   $${x^2} + {y^2} = 4{a^2}$$