Circle MCQ Questions & Answers in Geometry | Maths
Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
141.
If from any point $$P,$$ tangents $$PT,\,PT'$$ are drawn to two given circles with centers $$A$$ and $$B$$ respectively; and if $$PN$$ is the perpendicular from $$P$$ on their radical axis, then $$P{T^2} - PT{'^2} = ?$$
A
$$PN.AB$$
B
$$2PN.AB$$
C
$$4PN.AB$$
D
None of these
Answer :
$$2PN.AB$$
Let the two given circles be
$$\eqalign{
& {x^2} + {y^2} + 2{g_1}x + c = 0......\left( 1 \right) \cr
& {\text{and }}{x^2} + {y^2} + 2{g_2}x + c = 0......\left( 2 \right) \cr} $$
Their centres are $$A\left( { - {g_1},\,0} \right)$$ and $$B\left( { - {g_2},\,0} \right)$$
$$\therefore \,AB = {g_1} - {g_2}$$
Let $$P$$ be the point $$\left( {{x_1},\,{y_1}} \right).$$ Then,
$$\eqalign{
& PT = \sqrt {x_1^2 + y_1^2 + 2{g_1}{x_1} + c} \,; \cr
& PT = \sqrt {x_1^2 + y_1^2 + 2{g_2}{x_1} + c} \cr} $$
Radical axis of $$\left( 1 \right)$$ and $$\left( 2 \right)$$ is $$2\left( {{g_1} - {g_2}} \right)x = 0{\text{ or }}x = 0,$$
$$PN = $$ length of $$ \bot $$ from $$P$$ on radical axis $$ = {x_1}$$
$$\eqalign{
& \therefore \,P{T^2} - PT{'^2} \cr
& = \left( {x_1^2 + y_1^2 + 2{g_1}{x_1} + c} \right) - \left( {x_1^2 + y_1^2 + 2{g_2}{x_1} + c} \right) \cr
& = 2{x_1}\left( {{g_1} - {g_2}} \right) \cr
& = 2PN.AB \cr} $$
142.
If the circles $${x^2} + {y^2} + 2ax + c = 0$$ and $${x^2} + {y^2} + 2by + c = 0$$ touch each other then :
A
$${a^{ - 2}} + {b^{ - 2}} = {c^{ - 1}}$$
B
$${a^{ - 2}} + {b^{ - 2}} = {c^{ - 2}}$$
C
$$a + b = 2c$$
D
$$\frac{1}{a} + \frac{1}{b} = \frac{2}{c}$$
Answer :
$${a^{ - 2}} + {b^{ - 2}} = {c^{ - 1}}$$
Subtracting the equations, we get $$ax = by.$$ Putting this in the first
equation, $${x^2} + {\left( {\frac{a}{b}x} \right)^2} + 2ax + c = 0,$$ which should have equal roots. This gives $$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{c}.$$
143.
A line is drawn through a fixed point $$P\left( {\alpha ,\,\beta } \right)$$ to cut the circle $${x^2} + {y^2} = {a^2}$$ at $$A$$ and $$B,$$ then $$PA.PB$$ is equal to :
A
$${\alpha ^2} + {\beta ^2}$$
B
$${\alpha ^2} + {\beta ^2} - {a^2}$$
C
$${a^2}$$
D
$${\alpha ^2} + {\beta ^2} + {a^2}$$
Answer :
$${\alpha ^2} + {\beta ^2} - {a^2}$$
Any point on the line at a distance $$r$$ from the point $$P\left( {\alpha ,\,\beta } \right)$$ is $$\left( {\alpha + r\,\cos \,\theta ,\,\beta + r\,\sin \,\theta } \right)$$
If this point lies on $${x^2} + {y^2} = {a^2},$$ then
$$\eqalign{
& {\alpha ^2} + {r^2}{\cos ^2}\theta + 2\alpha r\,\cos \,\theta + {\beta ^2} + {r^2}{\sin ^2}\theta + 2\beta r\,\sin \,\theta = {a^2} \cr
& \Rightarrow {r^2} + 2r\left( {\alpha \,\cos \,\theta + \beta \,\sin \,\theta } \right) + {\alpha ^2} + {\beta ^2} = {a^2} \cr
& \Rightarrow {r^2} + 2r\left( {\alpha \,\cos \,\theta + \beta \,\sin \,\theta } \right) + {\alpha ^2} + {\beta ^2} - {a^2} = 0 \cr} $$
Now, if $$PA = {r_1}$$ and $$PB = {r_2},$$ then $${r_1}$$ and $${r_2}$$ must be roots of this equation.
$$\therefore \,PA.PB = {r_1}.{r_2} = {\alpha ^2} + {\beta ^2} - {a^2}$$
144.
The triangle$$PQR$$ is inscribed in the circle $${x^2} + {y^2} = 25.$$ If $$Q$$ and $$R$$ have co-ordinates $$\left( {3,\,4} \right)$$ and $$\left( { - 4,\,3} \right)$$ respectively, then $$\angle QPR$$ is equal to-
A
$$\frac{\pi }{2}$$
B
$$\frac{\pi }{3}$$
C
$$\frac{\pi }{4}$$
D
$$\frac{\pi }{6}$$
Answer :
$$\frac{\pi }{4}$$
$$O$$ is the point at centre and $$P$$ is the point at circumference. Therefore, angle $$QOR$$ double the angle $$QPR.$$
So, it sufficient to find the angle $$QOR.$$ Now slope of $$OQ = \frac{4}{3}$$
Slope of $$OR = - \frac{3}{4}$$
Again $${m_1}\,{m_2} = - 1$$
Therefore, $$\angle QOR = {90^ \circ }$$ which implies that $$\angle QPR = {45^ \circ }$$
145.
Two vertices of an equilateral triangle are $$\left( { - 1,\,0} \right)$$ and $$\left( {1,\,0} \right)$$ and its third vertex lies above the $$x$$-axis. The equation of the circumcircle of the triangle is :
The circumcentre $$C$$ is the centroid for an equilateral triangle.
$$\therefore \,C = \left( {0,\,\frac{1}{{\sqrt 3 }}} \right)$$ and radius $$ = \frac{2}{3}.\sqrt 3 .$$
So, the circumcircle is $${\left( {x - 0} \right)^2} + {\left( {y - \frac{1}{{\sqrt 3 }}} \right)^2} = {\left( {\frac{2}{3}.\sqrt 3 } \right)^2}$$
146.
The chords of contact of the pair of tangents to the circle $${x^2} + {y^2} = 1$$ drawn from any point on the line $$2x + y = 4$$ pass through the point :
Any point on $$2x + y = 4$$ is $$\left( {t,\,4 - 2t} \right).$$ The equation of the chord of contact of the point is $$x.t + y.\left( {4 - 2t} \right) = 1{\text{ or }}4y - 1 + t\left( {x - 2y} \right) = 0$$
This line passes through the intersection of $$4y - 1 = 0$$ and $$x - 2y = 0.$$
147.
The locus of the mid-point of a chord of the circle $${x^2} + {y^2} = 4$$ which subtends a right angle at the origin is-
A
$$x + y = 2$$
B
$${x^2} + {y^2} = 1$$
C
$${x^2} + {y^2} = 2$$
D
$$x + y = 1$$
Answer :
$${x^2} + {y^2} = 2$$
Let $$AB$$ be the chord with its mid point $$M\left( {h,\,k} \right).$$
As $$\angle AOB = {90^ \circ }$$
$$\eqalign{
& \therefore AB = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \cr
& \therefore AM = \sqrt 2 \cr} $$ NOTE THIS STEP
By prop. of rt. $$\Delta $$
$$\eqalign{
& AM = MB = OM \cr
& \therefore OM = \sqrt 2 \Rightarrow {h^2} + {k^2} = 2 \cr
& \therefore {\text{locus of }}\left( {h,k} \right){\text{ is }}{x^2} + {y^2} = 2 \cr} $$
148.
A circle is given by $${x^2} + {\left( {y - 1} \right)^2} = 1,$$ another circle $$C$$ touches it externally and also the $$x$$-axis, then the locus of its centre is-
Let the centre of circle $$C$$ be $$\left( {h,\,k} \right)$$ Then as this circle touches axis of $$x,$$ its radius $$ = \left| k \right|$$
Also it touches the given circle $${x^2} + {\left( {y - 1} \right)^2} = 1,$$ centre $$\left( {0,\,1} \right)$$ radius $$1$$, externally
Therefore, the distance between centres $$=$$ sum of radii
$$\eqalign{
& \Rightarrow \sqrt {{{\left( {h - 0} \right)}^2} + {{\left( {k - 1} \right)}^2}} = 1 + \left| k \right| \cr
& \Rightarrow {h^2} + {k^2} - 2k + 1 = {\left( {1 + \left| k \right|} \right)^2} \cr
& \Rightarrow {h^2} + {k^2} - 2k + 1 = 1 + 2\left| k \right| + {k^2} \cr
& \Rightarrow {h^2} = 2k + 2\left| k \right| \cr} $$
$$\therefore {\text{Locus of }}\left( {h,\,k} \right){\text{ is, }}\,{x^2} = 2y + 2\left| y \right|$$
Now if $$y>0,$$ it becomes $${x^2} = 4y$$
and if $$y \leqslant 0,$$ it becomes $$x = 0$$
$$\therefore $$ Combining the two, the required locus is $$\left\{ {\left( {x,\,y} \right):{x^2} = 4y} \right\} \cup \left\{ {\left( {0,\,y} \right):y \leqslant 0} \right\}$$
149.
If the circles $${x^2} + {y^2} + 2ax + cy + a = 0$$ and $${x^2} + {y^2} - 3ax + dy - 1 = 0$$ intersect in two distinct points $$P$$ and $$Q$$ then the line $$5x + by - a = 0$$ passes through $$P$$ and $$Q$$ for :
A
exactly one value of $$a$$
B
no value of $$a$$
C
infinitely many values of $$a$$
D
exactly two values of $$a$$
Answer :
no value of $$a$$
$$\eqalign{
& {S_1} = {x^2} + {y^2} + 2ax + cy + a = 0 \cr
& {S_2} = {x^2} + {y^2} - 3ax + dy - 1 = 0 \cr} $$
Equation of common chord of circles $${S_1}$$ and $${S_2}$$ is given by $${S_1} - {S_2} = 0$$
$$ \Rightarrow 5ax + \left( {c - d} \right)y + a + 1 = 0$$
Given that $$5x + by - a = 0$$ passes through $$P$$ and $$Q$$
$$\therefore $$ The two equations should represent the same line
$$\eqalign{
& \Rightarrow \frac{a}{1} = \frac{{c - d}}{b} = \frac{{a + 1}}{{ - a}} \cr
& \Rightarrow a + 1 = - {a^2} \cr
& \Rightarrow {a^2} + a + 1 = 0 \cr} $$
No real value of $$a.$$
150.
Locus of the image of the point $$\left( {2,\,3} \right)$$ in the line $$\left( {2x - 3y + 4} \right) + k\left( {x - 2y + 3} \right) = 0\,\,k \in \,{\bf{R}}$$ is a :
A
circle of radius $$\sqrt 2 $$
B
circle of radius $$\sqrt 3 $$
C
straight line parallel to $$x$$-axis
D
straight line parallel to $$y$$-axis
Answer :
circle of radius $$\sqrt 2 $$
Intersection point of $$2x - 3y + 4 = 0$$ and $$x - 2y + 3 = 0$$ is $$\left( {1,\,2} \right)$$
Since, $$P$$ is the fixed point for given family of lines
So, $$PB=PA$$
$$\eqalign{
& {\left( {\alpha - 1} \right)^2} + {\left( {\beta - 2} \right)^2} = {\left( {2 - 1} \right)^2} + {\left( {3 - 2} \right)^2} \cr
& {\left( {\alpha - 1} \right)^2} + {\left( {\beta - 2} \right)^2} = 1 + 1 = 2 \cr
& {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = {\left( {\sqrt 2 } \right)^2} \cr
& {\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2} \cr} $$
Therefore, given locus is a circle with centre $$\left( {1,\,2} \right)$$ and radius $$\sqrt 2 $$