Circle MCQ Questions & Answers in Geometry | Maths

Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

141. If from any point $$P,$$ tangents $$PT,\,PT'$$   are drawn to two given circles with centers $$A$$ and $$B$$ respectively; and if $$PN$$  is the perpendicular from $$P$$ on their radical axis, then $$P{T^2} - PT{'^2} = ?$$

A $$PN.AB$$
B $$2PN.AB$$
C $$4PN.AB$$
D None of these
Answer :   $$2PN.AB$$

142. If the circles $${x^2} + {y^2} + 2ax + c = 0$$     and $${x^2} + {y^2} + 2by + c = 0$$     touch each other then :

A $${a^{ - 2}} + {b^{ - 2}} = {c^{ - 1}}$$
B $${a^{ - 2}} + {b^{ - 2}} = {c^{ - 2}}$$
C $$a + b = 2c$$
D $$\frac{1}{a} + \frac{1}{b} = \frac{2}{c}$$
Answer :   $${a^{ - 2}} + {b^{ - 2}} = {c^{ - 1}}$$

143. A line is drawn through a fixed point $$P\left( {\alpha ,\,\beta } \right)$$   to cut the circle $${x^2} + {y^2} = {a^2}$$   at $$A$$ and $$B,$$ then $$PA.PB$$   is equal to :

A $${\alpha ^2} + {\beta ^2}$$
B $${\alpha ^2} + {\beta ^2} - {a^2}$$
C $${a^2}$$
D $${\alpha ^2} + {\beta ^2} + {a^2}$$
Answer :   $${\alpha ^2} + {\beta ^2} - {a^2}$$

144. The triangle$$PQR$$  is inscribed in the circle $${x^2} + {y^2} = 25.$$   If $$Q$$ and $$R$$ have co-ordinates $$\left( {3,\,4} \right)$$  and $$\left( { - 4,\,3} \right)$$   respectively, then $$\angle QPR$$   is equal to-

A $$\frac{\pi }{2}$$
B $$\frac{\pi }{3}$$
C $$\frac{\pi }{4}$$
D $$\frac{\pi }{6}$$
Answer :   $$\frac{\pi }{4}$$

145. Two vertices of an equilateral triangle are $$\left( { - 1,\,0} \right)$$  and $$\left( {1,\,0} \right)$$  and its third vertex lies above the $$x$$-axis. The equation of the circumcircle of the triangle is :

A $${x^2} + {y^2} = 1$$
B $$\sqrt 3 \left( {{x^2} + {y^2}} \right) + 2y - \sqrt 3 = 0$$
C $$\sqrt 3 \left( {{x^2} + {y^2}} \right) - 2y - \sqrt 3 = 0$$
D none of these
Answer :   $$\sqrt 3 \left( {{x^2} + {y^2}} \right) - 2y - \sqrt 3 = 0$$

146. The chords of contact of the pair of tangents to the circle $${x^2} + {y^2} = 1$$   drawn from any point on the line $$2x + y = 4$$   pass through the point :

A $$\left( {\frac{1}{2},\,\frac{1}{4}} \right)$$
B $$\left( {\frac{1}{4},\,\frac{1}{2}} \right)$$
C $$\left( {1,\,\frac{1}{2}} \right)$$
D $$\left( {\frac{1}{2},\,1} \right)$$
Answer :   $$\left( {\frac{1}{2},\,\frac{1}{4}} \right)$$

147. The locus of the mid-point of a chord of the circle $${x^2} + {y^2} = 4$$    which subtends a right angle at the origin is-

A $$x + y = 2$$
B $${x^2} + {y^2} = 1$$
C $${x^2} + {y^2} = 2$$
D $$x + y = 1$$
Answer :   $${x^2} + {y^2} = 2$$

148. A circle is given by $${x^2} + {\left( {y - 1} \right)^2} = 1,$$    another circle $$C$$ touches it externally and also the $$x$$-axis, then the locus of its centre is-

A $$\left\{ {\left( {x,\,y} \right):{x^2} = 4y} \right\} \cup \left\{ {\left( {x,\,y} \right):y \leqslant 0} \right\}$$
B $$\left\{ {\left( {x,\,y} \right):{x^2} + {{\left( {y - 1} \right)}^2} = 4} \right\} \cup \left\{ {\left( {x,\,y} \right):y \leqslant 0} \right\}$$
C $$\left\{ {\left( {x,\,y} \right):{x^2} = y} \right\} \cup \left\{ {\left( {0,\,y} \right):y \leqslant 0} \right\}$$
D $$\left\{ {\left( {x,\,y} \right):{x^2} = 4y} \right\} \cup \left\{ {\left( {0,\,y} \right):y \leqslant 0} \right\}$$
Answer :   $$\left\{ {\left( {x,\,y} \right):{x^2} = 4y} \right\} \cup \left\{ {\left( {0,\,y} \right):y \leqslant 0} \right\}$$

149. If the circles $${x^2} + {y^2} + 2ax + cy + a = 0$$      and $${x^2} + {y^2} - 3ax + dy - 1 = 0$$      intersect in two distinct points $$P$$ and $$Q$$ then the line $$5x + by - a = 0$$    passes through $$P$$ and $$Q$$ for :

A exactly one value of $$a$$
B no value of $$a$$
C infinitely many values of $$a$$
D exactly two values of $$a$$
Answer :   no value of $$a$$

150. Locus of the image of the point $$\left( {2,\,3} \right)$$  in the line $$\left( {2x - 3y + 4} \right) + k\left( {x - 2y + 3} \right) = 0\,\,k \in \,{\bf{R}}$$         is a :

A circle of radius $$\sqrt 2 $$
B circle of radius $$\sqrt 3 $$
C straight line parallel to $$x$$-axis
D straight line parallel to $$y$$-axis
Answer :   circle of radius $$\sqrt 2 $$